I–Convergence of Arithmetical Functions

V. Baláž, T. Visnyai
{"title":"I–Convergence of Arithmetical Functions","authors":"V. Baláž, T. Visnyai","doi":"10.5772/intechopen.91932","DOIUrl":null,"url":null,"abstract":"Let n > 1 be an integer with its canonical representation, n = p 1 α 1 p 2 α 2 ⋯ p k α k . Put H n = max α 1 … α k , h n = min α 1 … α k , ω n = k , Ω n = α 1 + ⋯ + α k , f n = ∏ d ∣ n d and f ∗ n = f n n . Many authors deal with the statistical convergence of these arithmetical functions. For instance, the notion of normal order is defined by means of statistical convergence. The statistical convergence is equivalent with I d –convergence, where I d is the ideal of all subsets of positive integers having the asymptotic density zero. In this part, we will study I –convergence of the well-known arithmetical functions, where I = I c q = A ⊂ N : ∑ a ∈ A a − q < + ∞ is an admissible ideal on N such that for q ∈ 0 1 we have I c q ⊊ I d , thus I c q –convergence is stronger than the statistical convergence ( I d –convergence).","PeriodicalId":280679,"journal":{"name":"Number Theory and its Applications","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Number Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.91932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Let n > 1 be an integer with its canonical representation, n = p 1 α 1 p 2 α 2 ⋯ p k α k . Put H n = max α 1 … α k , h n = min α 1 … α k , ω n = k , Ω n = α 1 + ⋯ + α k , f n = ∏ d ∣ n d and f ∗ n = f n n . Many authors deal with the statistical convergence of these arithmetical functions. For instance, the notion of normal order is defined by means of statistical convergence. The statistical convergence is equivalent with I d –convergence, where I d is the ideal of all subsets of positive integers having the asymptotic density zero. In this part, we will study I –convergence of the well-known arithmetical functions, where I = I c q = A ⊂ N : ∑ a ∈ A a − q < + ∞ is an admissible ideal on N such that for q ∈ 0 1 we have I c q ⊊ I d , thus I c q –convergence is stronger than the statistical convergence ( I d –convergence).
算术函数的收敛性
它让n > 1的整数一起canonical representation, n = p p p 1αα2⋯k kα。普特H n = maxα1 ... H n = minα1 ... kα,αkωn = k,⋯Ωn =α1 +αk, n =∏d∣d和f f f∗n = n n。许多权威都在处理这些计算功能的统计结果。例如,正常秩序的定义是通过统计收敛的手段。统计结果与I - converity相协调,在这种情况下,所有积极资产的基层资产的理想体现了对极低犯罪率的讽刺。在这一部分,我们将研究我——集的《well-known arithmetical functions,哪里I = I c q = A⊂N:∑A∈A + A−q <∞是an admissible理想为q∈N如此那0 1上我们有c智商⊊华盛顿,因此我智商——集的比强是神经紊乱的(I d—集的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信