YOLOMask: Real-time Instance Segmentation With Integrating YOLOv5 and OrienMask

Yang Wang, Zhikui Ouyang, Runhua Han, Zhijian Yin, Zhen Yang
{"title":"YOLOMask: Real-time Instance Segmentation With Integrating YOLOv5 and OrienMask","authors":"Yang Wang, Zhikui Ouyang, Runhua Han, Zhijian Yin, Zhen Yang","doi":"10.1109/ICCT56141.2022.10073387","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a real-time framework for instance segmentation, which we call YOLOMask and which builds on the real-time project OrienMask. In YOLOMask, we integrate the YOLOv5 object detection framework with the OrienMask instance segmentation framework to form a new real-time instance segmentation framework and we integrate CBAM into YOLOMask, which can help the network to find regions of interest in images with large area coverage. Using this method, our YOLOMask can achieve 47.8/44.3 msak/box AP on Pascal 2012 SBD dataset evaluated at 84.3 fps with a V100 GPU. Compared to OrienMask, YOLOMask improves box AP by about 5.8% and mask AP by 4.5%, which is encouraging and competitive. Given its simplicity and efficiency, we hope that our YOLOMask can serve as a simple but strong baseline for a variety of instance-wise prediction tasks.","PeriodicalId":294057,"journal":{"name":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT56141.2022.10073387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a real-time framework for instance segmentation, which we call YOLOMask and which builds on the real-time project OrienMask. In YOLOMask, we integrate the YOLOv5 object detection framework with the OrienMask instance segmentation framework to form a new real-time instance segmentation framework and we integrate CBAM into YOLOMask, which can help the network to find regions of interest in images with large area coverage. Using this method, our YOLOMask can achieve 47.8/44.3 msak/box AP on Pascal 2012 SBD dataset evaluated at 84.3 fps with a V100 GPU. Compared to OrienMask, YOLOMask improves box AP by about 5.8% and mask AP by 4.5%, which is encouraging and competitive. Given its simplicity and efficiency, we hope that our YOLOMask can serve as a simple but strong baseline for a variety of instance-wise prediction tasks.
YOLOv5和OrienMask集成的实时实例分割
在本文中,我们提出了一个实例分割的实时框架,我们称之为YOLOMask,它建立在实时项目OrienMask的基础上。在YOLOMask中,我们将YOLOv5目标检测框架与OrienMask实例分割框架相结合,形成新的实时实例分割框架,并将CBAM集成到YOLOMask中,可以帮助网络在大面积覆盖的图像中找到感兴趣的区域。使用这种方法,我们的YOLOMask可以在Pascal 2012 SBD数据集上实现47.8/44.3 msak/box AP,在V100 GPU上以84.3 fps进行评估。与OrienMask相比,YOLOMask将box AP提高了约5.8%,mask AP提高了4.5%,这是令人鼓舞和具有竞争力的。考虑到它的简单性和效率,我们希望我们的YOLOMask可以作为各种实例预测任务的简单但强大的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信