AGC EDFA transient suppression algorithm assisted by cognitive neural network

Heitor Carvalho, Israel J. G. Cassimiro, Francisco H. C. S. Filho, Juliano R. F. de Oliveira, A. Bordonalli
{"title":"AGC EDFA transient suppression algorithm assisted by cognitive neural network","authors":"Heitor Carvalho, Israel J. G. Cassimiro, Francisco H. C. S. Filho, Juliano R. F. de Oliveira, A. Bordonalli","doi":"10.1109/ITS.2014.6947964","DOIUrl":null,"url":null,"abstract":"This work proposes an EDFA electronic automatic gain control (AGC) scheme assisted by a cognitive neural network algorithm, providing gain control with transient suppression for potentially any EDFA operation point (input/output power condition) within a DWDM dynamic optical network. The idea is to use the neural network to estimate pump power levels and speed up the AGC proportional integral gain controller convergence. For experimental testing, the algorithm was embedded in a microprocessor inside an EDFA module, which was then placed in a fully-loaded reconfigurable DWDM optical link (80 × 112 Gbits/s DP-QPSK channels). By assuming a central point in the controller power mask, results show that gain control is kept below 2 dB for a giving surviving channel, with strong transient suppression during add/drop of 79 out of 80 channels (19 dB input power variation), leading to minimum undershoot/overshoot below 3.1 dB.","PeriodicalId":359348,"journal":{"name":"2014 International Telecommunications Symposium (ITS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Telecommunications Symposium (ITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.2014.6947964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work proposes an EDFA electronic automatic gain control (AGC) scheme assisted by a cognitive neural network algorithm, providing gain control with transient suppression for potentially any EDFA operation point (input/output power condition) within a DWDM dynamic optical network. The idea is to use the neural network to estimate pump power levels and speed up the AGC proportional integral gain controller convergence. For experimental testing, the algorithm was embedded in a microprocessor inside an EDFA module, which was then placed in a fully-loaded reconfigurable DWDM optical link (80 × 112 Gbits/s DP-QPSK channels). By assuming a central point in the controller power mask, results show that gain control is kept below 2 dB for a giving surviving channel, with strong transient suppression during add/drop of 79 out of 80 channels (19 dB input power variation), leading to minimum undershoot/overshoot below 3.1 dB.
认知神经网络辅助的AGC EDFA瞬态抑制算法
本研究提出了一种由认知神经网络算法辅助的EDFA电子自动增益控制(AGC)方案,为DWDM动态光网络中任何EDFA操作点(输入/输出功率条件)提供具有瞬态抑制的增益控制。其思想是利用神经网络估计泵浦功率电平,加快AGC比例积分增益控制器的收敛速度。为了进行实验测试,将该算法嵌入到EDFA模块内的微处理器中,然后将其置于满载可重构DWDM光链路(80 × 112 Gbits/s DP-QPSK通道)中。通过在控制器功率掩模中假设一个中心点,结果表明对于给定的存活通道,增益控制保持在2 dB以下,在80个通道中的79个通道(19 dB输入功率变化)的加/降期间具有强瞬态抑制,导致最小过调/过调低于3.1 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信