FPGA-based LSTM Acceleration for Real-Time EEG Signal Processing: (Abstract Only)

Zhe Chen, Andrew G. Howe, H. T. Blair, J. Cong
{"title":"FPGA-based LSTM Acceleration for Real-Time EEG Signal Processing: (Abstract Only)","authors":"Zhe Chen, Andrew G. Howe, H. T. Blair, J. Cong","doi":"10.1145/3174243.3174969","DOIUrl":null,"url":null,"abstract":"Closed-loop neurofeedback is a growing area of research and development for novel therapies to treat brain disorders. A neurofeedback device can detect disease symptoms (such as motor tremors or seizures) in real time from electroencephalogram (EEG) signals, and respond by rapidly delivering neurofeedback stimulation that relieves these symptoms. Conventional EEG processing algorithms rely on acausal filters, which impose delays that can exceed the short feedback latency required for closed-loop stimulation. In this paper, we first introduce a method for causal filtering using long short-term memory (LSTM) networks, which radically reduces the filtering latency. We then propose a reconfigurable architecture that supports time-division multiplexing of LSTM inference engines on a prototype neurofeedback device. We implemented a 128-channel EEG signal processing design on a Zynq-7030 device, and demonstrated its feasibility. Then, we further scaled up the design onto Zynq-7045 and Virtex-690t devices to achieve high performance and energy efficient implementations for massively parallel brain signal processing. We evaluated the performance against optimized implementations on CPU and GPU at the same CMOS technology node. Experiment results show that the Virtex-690t can achieve 1.32x and 11x speed-up against the K40c GPU and the multi-thread Xeon E5-2860 CPU, respectively, while FPGA achieves 6.1x and 26.6x energy efficiency compared to the GPU and CPU.","PeriodicalId":164936,"journal":{"name":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3174243.3174969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Closed-loop neurofeedback is a growing area of research and development for novel therapies to treat brain disorders. A neurofeedback device can detect disease symptoms (such as motor tremors or seizures) in real time from electroencephalogram (EEG) signals, and respond by rapidly delivering neurofeedback stimulation that relieves these symptoms. Conventional EEG processing algorithms rely on acausal filters, which impose delays that can exceed the short feedback latency required for closed-loop stimulation. In this paper, we first introduce a method for causal filtering using long short-term memory (LSTM) networks, which radically reduces the filtering latency. We then propose a reconfigurable architecture that supports time-division multiplexing of LSTM inference engines on a prototype neurofeedback device. We implemented a 128-channel EEG signal processing design on a Zynq-7030 device, and demonstrated its feasibility. Then, we further scaled up the design onto Zynq-7045 and Virtex-690t devices to achieve high performance and energy efficient implementations for massively parallel brain signal processing. We evaluated the performance against optimized implementations on CPU and GPU at the same CMOS technology node. Experiment results show that the Virtex-690t can achieve 1.32x and 11x speed-up against the K40c GPU and the multi-thread Xeon E5-2860 CPU, respectively, while FPGA achieves 6.1x and 26.6x energy efficiency compared to the GPU and CPU.
基于fpga的LSTM加速实时脑电信号处理
闭环神经反馈是研究和开发治疗脑部疾病的新疗法的一个日益增长的领域。神经反馈装置可以从脑电图(EEG)信号中实时检测疾病症状(如运动性震颤或癫痫发作),并通过快速传递神经反馈刺激来缓解这些症状。传统的脑电图处理算法依赖于因果滤波器,它施加的延迟可能超过闭环刺激所需的短反馈延迟。在本文中,我们首先介绍了一种使用长短期记忆(LSTM)网络进行因果滤波的方法,该方法从根本上降低了滤波延迟。然后,我们提出了一种可重构架构,该架构支持LSTM推理引擎在原型神经反馈设备上的时分复用。我们在Zynq-7030上实现了128通道脑电信号处理设计,并验证了其可行性。然后,我们进一步将设计扩展到Zynq-7045和Virtex-690t设备上,以实现大规模并行脑信号处理的高性能和节能实现。我们在同一CMOS技术节点上对CPU和GPU的优化实现进行了性能评估。实验结果表明,Virtex-690t相对于K40c GPU和多线程Xeon E5-2860 CPU分别可以实现1.32倍和11倍的速度提升,而FPGA相对于GPU和CPU可以实现6.1倍和26.6倍的能效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信