Semantic segmentation-based traffic sign detection and recognition using deep learning techniques

Calin Timbus, Vlad-Cristian Miclea, C. Lemnaru
{"title":"Semantic segmentation-based traffic sign detection and recognition using deep learning techniques","authors":"Calin Timbus, Vlad-Cristian Miclea, C. Lemnaru","doi":"10.1109/ICCP.2018.8516600","DOIUrl":null,"url":null,"abstract":"We present a method for detecting and classifying traffic signs based on two deep neural network architectures. A Fully Convolutional Network (FCN) - based semantic segmentation model is modified to extract traffic sign regions of interest. These regions are further passed to a Convolutional Neural Network (CNN) for traffic sign classification. We propose a novel CNN architecture for the classification step. In evaluating our approach, we contrast the efficiency and the robustness of the deep learning image segmentation approach with classical image processing filters traditionally applied for traffic sign detection. We also show the effectiveness of our CNN-based recognition method by integrating it in our system.","PeriodicalId":259007,"journal":{"name":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2018.8516600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a method for detecting and classifying traffic signs based on two deep neural network architectures. A Fully Convolutional Network (FCN) - based semantic segmentation model is modified to extract traffic sign regions of interest. These regions are further passed to a Convolutional Neural Network (CNN) for traffic sign classification. We propose a novel CNN architecture for the classification step. In evaluating our approach, we contrast the efficiency and the robustness of the deep learning image segmentation approach with classical image processing filters traditionally applied for traffic sign detection. We also show the effectiveness of our CNN-based recognition method by integrating it in our system.
基于语义分割的交通标志检测与识别的深度学习技术
提出了一种基于两种深度神经网络结构的交通标志检测与分类方法。改进了基于全卷积网络(FCN)的语义分割模型,提取感兴趣的交通标志区域。这些区域被进一步传递给卷积神经网络(CNN)进行交通标志分类。我们为分类步骤提出了一种新颖的CNN架构。在评估我们的方法时,我们将深度学习图像分割方法的效率和鲁棒性与传统用于交通标志检测的经典图像处理滤波器进行了对比。我们还通过将基于cnn的识别方法集成到我们的系统中来证明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信