Minimally Nonstandard K3 and FDE

Rea Golan, Ulf Hlobil
{"title":"Minimally Nonstandard K3 and FDE","authors":"Rea Golan, Ulf Hlobil","doi":"10.26686/ajl.v19i5.7540","DOIUrl":null,"url":null,"abstract":"Graham Priest has formulated the minimally inconsistent logic of paradox (MiLP), which is paraconsistent like Priest’s logic of paradox (LP), while staying closer to classical logic. We present logics that stand to (the propositional fragments of) strong Kleene logic (K3) and the logic of first-degree entailment (FDE) as MiLP stands to LP. That is, our logics share the paracomplete and the paraconsistent-cum-paracomplete nature of K3 and FDE, respectively, while keeping these features to a minimum in order to stay closer to classical logic. We give semantic and sequent-calculus formulations of these logics, and we highlight some reasons why these logics may be interesting in their own right.","PeriodicalId":367849,"journal":{"name":"The Australasian Journal of Logic","volume":"828 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Australasian Journal of Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26686/ajl.v19i5.7540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graham Priest has formulated the minimally inconsistent logic of paradox (MiLP), which is paraconsistent like Priest’s logic of paradox (LP), while staying closer to classical logic. We present logics that stand to (the propositional fragments of) strong Kleene logic (K3) and the logic of first-degree entailment (FDE) as MiLP stands to LP. That is, our logics share the paracomplete and the paraconsistent-cum-paracomplete nature of K3 and FDE, respectively, while keeping these features to a minimum in order to stay closer to classical logic. We give semantic and sequent-calculus formulations of these logics, and we highlight some reasons why these logics may be interesting in their own right.
最小非标准K3和FDE
格雷厄姆·普里斯特提出了最小不一致悖论逻辑(MiLP),它与普里斯特的悖论逻辑(LP)相似,但更接近经典逻辑。我们提出的逻辑(命题片段)强Kleene逻辑(K3)和一级蕴涵逻辑(FDE)作为MiLP代表LP的逻辑。也就是说,我们的逻辑分别共享K3和FDE的准完全和准一致兼准完全性质,同时将这些特征保持到最小,以便更接近经典逻辑。我们给出了这些逻辑的语义和顺序演算公式,并强调了这些逻辑本身可能有趣的一些原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信