{"title":"Polygon-circle and word-representable graphs","authors":"Jessica Enright, Sergey Kitaev","doi":"10.1016/j.endm.2019.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>We describe work on the relationship between the independently-studied polygon-circle graphs and word-representable graphs.</p><p>A graph <em>G</em> = (<em>V</em>, <em>E</em>) is <em>word-representable</em> if there exists a word <em>w</em> over the alpha-bet <em>V</em> such that letters <em>x</em> and <em>y</em> form a subword of the form <em>xyxy</em> ⋯ or <em>yxyx</em> ⋯ iff <em>xy</em> is an edge in <em>E</em>. Word-representable graphs generalise several well-known and well-studied classes of graphs [S. Kitaev, <em>A Comprehensive Introduction to the Theory of Word-Representable Graphs</em>, Lecture Notes in Computer Science <strong>10396</strong> (2017) 36–67; S. Kitaev, V. Lozin, “Words and Graphs”, <em>Springer</em>, 2015]. It is known that any word-representable graph is <em>k</em>-word-representable, that is, can be represented by a word having exactly <em>k</em> copies of each letter for some <em>k</em> dependent on the graph. Recognising whether a graph is word-representable is NP-complete ([S. Kitaev, V. Lozin, “Words and Graphs”, <em>Springer</em>, 2015, Theorem 4.2.15]). A <em>polygon-circle graph</em> (also known as a <em>spider graph</em>) is the intersection graph of a set of polygons inscribed in a circle [M. Koebe, <em>On a new class of intersection graphs</em>, Ann. Discrete Math. (1992) 141–143]. That is, two vertices of a graph are adjacent if their respective polygons have a non-empty intersection, and the set of polygons that correspond to vertices in this way are said to <em>represent</em> the graph. Recognising whether an input graph is a polygon-circle graph is NP-complete [M. Pergel, <em>Recognition of polygon-circle graphs and graphs of interval filaments is NP-complete</em>, Graph-Theoretic Concepts in Computer Science: 33rd Int. Workshop, Lecture Notes in Computer Science, <strong>4769</strong> (2007) 238–247]. We show that neither of these two classes is included in the other one by showing that the word-representable Petersen graph and crown graphs are not polygon-circle, while the non-word-representable wheel graph <em>W</em><sub>5</sub> is polygon-circle. We also provide a more refined result showing that for any <em>k</em> ≥ 3, there are <em>k</em>-word-representable graphs which are neither (<em>k</em> −1)-word-representable nor polygon-circle.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2019.02.001","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065319300010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
We describe work on the relationship between the independently-studied polygon-circle graphs and word-representable graphs.
A graph G = (V, E) is word-representable if there exists a word w over the alpha-bet V such that letters x and y form a subword of the form xyxy ⋯ or yxyx ⋯ iff xy is an edge in E. Word-representable graphs generalise several well-known and well-studied classes of graphs [S. Kitaev, A Comprehensive Introduction to the Theory of Word-Representable Graphs, Lecture Notes in Computer Science 10396 (2017) 36–67; S. Kitaev, V. Lozin, “Words and Graphs”, Springer, 2015]. It is known that any word-representable graph is k-word-representable, that is, can be represented by a word having exactly k copies of each letter for some k dependent on the graph. Recognising whether a graph is word-representable is NP-complete ([S. Kitaev, V. Lozin, “Words and Graphs”, Springer, 2015, Theorem 4.2.15]). A polygon-circle graph (also known as a spider graph) is the intersection graph of a set of polygons inscribed in a circle [M. Koebe, On a new class of intersection graphs, Ann. Discrete Math. (1992) 141–143]. That is, two vertices of a graph are adjacent if their respective polygons have a non-empty intersection, and the set of polygons that correspond to vertices in this way are said to represent the graph. Recognising whether an input graph is a polygon-circle graph is NP-complete [M. Pergel, Recognition of polygon-circle graphs and graphs of interval filaments is NP-complete, Graph-Theoretic Concepts in Computer Science: 33rd Int. Workshop, Lecture Notes in Computer Science, 4769 (2007) 238–247]. We show that neither of these two classes is included in the other one by showing that the word-representable Petersen graph and crown graphs are not polygon-circle, while the non-word-representable wheel graph W5 is polygon-circle. We also provide a more refined result showing that for any k ≥ 3, there are k-word-representable graphs which are neither (k −1)-word-representable nor polygon-circle.
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.