B. Carlsten, S. Russell, L. Earley, J. Potter, P. Ferguson, S. Humphries
{"title":"MM-wave source development at Los Alamos","authors":"B. Carlsten, S. Russell, L. Earley, J. Potter, P. Ferguson, S. Humphries","doi":"10.1109/IVELEC.2004.1316179","DOIUrl":null,"url":null,"abstract":"Summary form only given. A sheet-beam traveling-wave amplifier has been proposed as a high-power generator for RF from 95 to 300 GHz, using a microfabricated RF slow-wave structure. The planar geometry of microfabrication technologies matches well with the nearly planar geometry of a sheet beam, and the greater allowable beam current leads to high-peak power (up to 500 kW at 95 GHz), high-average power (up to 5 kW), and wide bandwidths (up to 10%). Simulations have indicated gains in excess of 1 dB/mm, with extraction efficiencies greater than 20%.","PeriodicalId":283559,"journal":{"name":"Fifth IEEE International Vacuum Electronics Conference (IEEE Cat. No.04EX786)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth IEEE International Vacuum Electronics Conference (IEEE Cat. No.04EX786)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVELEC.2004.1316179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Summary form only given. A sheet-beam traveling-wave amplifier has been proposed as a high-power generator for RF from 95 to 300 GHz, using a microfabricated RF slow-wave structure. The planar geometry of microfabrication technologies matches well with the nearly planar geometry of a sheet beam, and the greater allowable beam current leads to high-peak power (up to 500 kW at 95 GHz), high-average power (up to 5 kW), and wide bandwidths (up to 10%). Simulations have indicated gains in excess of 1 dB/mm, with extraction efficiencies greater than 20%.