Re-SSS: Rebalancing Imbalanced Data Using Safe Sample Screening

Hongbo Shi, Xin Chen, Mingzhe Guo
{"title":"Re-SSS: Rebalancing Imbalanced Data Using Safe Sample Screening","authors":"Hongbo Shi, Xin Chen, Mingzhe Guo","doi":"10.3745/JIPS.01.0065","DOIUrl":null,"url":null,"abstract":"Different samples can have different effects on learning support vector machine (SVM) classifiers. To rebalance an imbalanced dataset, it is reasonable to reduce non-informative samples and add informative samples for learning classifiers. Safe sample screening can identify a part of non-informative samples and retain informative samples. This study developed a resampling algorithm for Rebalancing imbalanced data using Safe Sample Screening (Re-SSS), which is composed of selecting Informative Samples (Re-SSS-IS) and rebalancing via a Weighted SMOTE (Re-SSS-WSMOTE). The Re-SSS-IS selects informative samples from the majority class, and determines a suitable regularization parameter for SVM, while the Re-SSS-WSMOTE generates informative minority samples. Both Re-SSS-IS and Re-SSS-WSMOTE are based on safe sampling screening. The experimental results show that Re-SSS can effectively improve the classification performance of imbalanced classification problems.","PeriodicalId":415161,"journal":{"name":"J. Inf. Process. Syst.","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Process. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3745/JIPS.01.0065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Different samples can have different effects on learning support vector machine (SVM) classifiers. To rebalance an imbalanced dataset, it is reasonable to reduce non-informative samples and add informative samples for learning classifiers. Safe sample screening can identify a part of non-informative samples and retain informative samples. This study developed a resampling algorithm for Rebalancing imbalanced data using Safe Sample Screening (Re-SSS), which is composed of selecting Informative Samples (Re-SSS-IS) and rebalancing via a Weighted SMOTE (Re-SSS-WSMOTE). The Re-SSS-IS selects informative samples from the majority class, and determines a suitable regularization parameter for SVM, while the Re-SSS-WSMOTE generates informative minority samples. Both Re-SSS-IS and Re-SSS-WSMOTE are based on safe sampling screening. The experimental results show that Re-SSS can effectively improve the classification performance of imbalanced classification problems.
Re-SSS:使用安全样本筛选重新平衡不平衡数据
不同的样本对学习支持向量机(SVM)分类器有不同的影响。为了平衡一个不平衡的数据集,减少非信息样本,增加信息样本来学习分类器是合理的。安全样本筛选可以识别出一部分非信息性样本,保留信息性样本。本研究开发了一种利用安全样本筛选(Re-SSS)对失衡数据进行再平衡的重采样算法,该算法由选择信息样本(Re-SSS- is)和通过加权SMOTE (Re-SSS- wsmote)进行再平衡组成。Re-SSS-IS从多数类中选择信息样本,并确定适合SVM的正则化参数,Re-SSS-WSMOTE生成信息少数派样本。Re-SSS-IS和Re-SSS-WSMOTE都是基于安全抽样筛选。实验结果表明,Re-SSS可以有效地提高不平衡分类问题的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信