Optimal position control of a DC motor using LQG with EKF

M. Aravind, N. Saikumar, N. Dinesh
{"title":"Optimal position control of a DC motor using LQG with EKF","authors":"M. Aravind, N. Saikumar, N. Dinesh","doi":"10.1109/ICMSC.2017.7959461","DOIUrl":null,"url":null,"abstract":"This paper deals with the implementation of the Linear Quadratic Gaussian (LQG) with an Extended Kalman Filter (EKF) for the position control of a PMDC motor. LQG is a popularly used linear optimal control technique in literature. However, the direct implementation of LQG with the use of the Kalman Filter as the optimal estimator is incapable of adapting to changes in the system parameters which results in a deviation from the expected optimal performance. EKF allows for the estimation of the system parameter values along with the unknown states of the system. The estimated values are used to constantly update the plant model and calculate the gains for optimal performance. The effectiveness of this technique on the DC motor position control system for various changes in system parameter values is studied in this paper and compared with the performance of a simple Kalman Filter to show the improvement in performance. The results show improvements in both step responses and tracking performances with the use of the EKF estimator along with the LQG controller.","PeriodicalId":356055,"journal":{"name":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Mechanical, System and Control Engineering (ICMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMSC.2017.7959461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper deals with the implementation of the Linear Quadratic Gaussian (LQG) with an Extended Kalman Filter (EKF) for the position control of a PMDC motor. LQG is a popularly used linear optimal control technique in literature. However, the direct implementation of LQG with the use of the Kalman Filter as the optimal estimator is incapable of adapting to changes in the system parameters which results in a deviation from the expected optimal performance. EKF allows for the estimation of the system parameter values along with the unknown states of the system. The estimated values are used to constantly update the plant model and calculate the gains for optimal performance. The effectiveness of this technique on the DC motor position control system for various changes in system parameter values is studied in this paper and compared with the performance of a simple Kalman Filter to show the improvement in performance. The results show improvements in both step responses and tracking performances with the use of the EKF estimator along with the LQG controller.
基于LQG和EKF的直流电机最优位置控制
本文研究了线性二次高斯(LQG)和扩展卡尔曼滤波(EKF)在PMDC电机位置控制中的应用。LQG是文献中常用的线性最优控制技术。然而,使用卡尔曼滤波器作为最优估计器的LQG的直接实现无法适应系统参数的变化,从而导致偏离预期的最优性能。EKF允许对系统参数值以及系统的未知状态进行估计。估计值用于不断更新工厂模型并计算最佳性能的增益。本文研究了该技术在直流电机位置控制系统中对系统参数值变化的有效性,并与简单卡尔曼滤波器的性能进行了比较,以显示性能的提高。结果表明,使用EKF估计器和LQG控制器可以改善阶跃响应和跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信