{"title":"Machine learning in prognosis research","authors":"M. Schaar, H. Hemingway","doi":"10.1093/MED/9780198796619.003.0017","DOIUrl":null,"url":null,"abstract":"Machine learning offers an alternative to the methods for prognosis research in large and complex datasets and for delivering dynamic models of prognosis. Machine learning foregrounds the capacity to learn from large and complex data about the pathways, predictors, and trajectories of health outcomes in individuals. This reflects wider societal drives for data-driven modelling embedded and automated within powerful computers to analyse large amounts of data. Machine learning derives algorithms that can learn from data and can allow the data full freedom, for example, to follow a pragmatic approach in developing a prognostic model. Rather than choosing factors for model development in advance, machine learning allows the data to reveal which features are important for which predictions. This chapter introduces key machine learning concepts relevant to each of the four prognosis research types, explains where it may enhance prognosis research, and highlights challenges.","PeriodicalId":138014,"journal":{"name":"Prognosis Research in Health Care","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prognosis Research in Health Care","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/MED/9780198796619.003.0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Machine learning offers an alternative to the methods for prognosis research in large and complex datasets and for delivering dynamic models of prognosis. Machine learning foregrounds the capacity to learn from large and complex data about the pathways, predictors, and trajectories of health outcomes in individuals. This reflects wider societal drives for data-driven modelling embedded and automated within powerful computers to analyse large amounts of data. Machine learning derives algorithms that can learn from data and can allow the data full freedom, for example, to follow a pragmatic approach in developing a prognostic model. Rather than choosing factors for model development in advance, machine learning allows the data to reveal which features are important for which predictions. This chapter introduces key machine learning concepts relevant to each of the four prognosis research types, explains where it may enhance prognosis research, and highlights challenges.