FOGL: Federated Object Grasping Learning

Seok–Kyu Kang, Changhyun Choi
{"title":"FOGL: Federated Object Grasping Learning","authors":"Seok–Kyu Kang, Changhyun Choi","doi":"10.1109/ICRA48891.2023.10161191","DOIUrl":null,"url":null,"abstract":"Federated learning is a promising technique for training global models in a data-decentralized environment. In this paper, we propose a federated learning approach for robotic object grasping. The main challenge is that the data collected by multiple robots deployed in different environments tends to form heterogeneous data distributions (i.e., non-IID) and that the existing federated learning methods on such data distributions show serious performance degradation. To tackle this problem, we propose federated object grasping learning (FOGL) that uses cross-evaluation in a general federated learning process to assess the training performance of robots. We cluster robots with similar training patterns and perform independent federated learning on each cluster. Finally, we integrate the global models for each cluster through an ensemble inference. We apply FOGL to various federated learning scenarios in robotic object grasping and show state-of-the-art performance on the Cornell grasping dataset.","PeriodicalId":360533,"journal":{"name":"2023 IEEE International Conference on Robotics and Automation (ICRA)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48891.2023.10161191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning is a promising technique for training global models in a data-decentralized environment. In this paper, we propose a federated learning approach for robotic object grasping. The main challenge is that the data collected by multiple robots deployed in different environments tends to form heterogeneous data distributions (i.e., non-IID) and that the existing federated learning methods on such data distributions show serious performance degradation. To tackle this problem, we propose federated object grasping learning (FOGL) that uses cross-evaluation in a general federated learning process to assess the training performance of robots. We cluster robots with similar training patterns and perform independent federated learning on each cluster. Finally, we integrate the global models for each cluster through an ensemble inference. We apply FOGL to various federated learning scenarios in robotic object grasping and show state-of-the-art performance on the Cornell grasping dataset.
FOGL:联邦对象抓取学习
联邦学习是在数据分散环境中训练全局模型的一种很有前途的技术。在本文中,我们提出了一种用于机器人物体抓取的联邦学习方法。主要的挑战是,部署在不同环境中的多个机器人收集的数据往往会形成异构数据分布(即非iid),并且现有的联邦学习方法在这种数据分布上表现出严重的性能下降。为了解决这个问题,我们提出了联邦对象抓取学习(FOGL),它在一般的联邦学习过程中使用交叉评估来评估机器人的训练性能。我们将具有相似训练模式的机器人聚在一起,并在每个聚类上执行独立的联邦学习。最后,我们通过集成推理来整合每个集群的全局模型。我们将FOGL应用于机器人物体抓取的各种联邦学习场景,并在Cornell抓取数据集上展示了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信