Knowledge-based music retrieval for places of interest

MIRUM '12 Pub Date : 2012-11-02 DOI:10.1145/2390848.2390854
Marius Kaminskas, Ignacio Fernández-Tobías, F. Ricci, Iván Cantador
{"title":"Knowledge-based music retrieval for places of interest","authors":"Marius Kaminskas, Ignacio Fernández-Tobías, F. Ricci, Iván Cantador","doi":"10.1145/2390848.2390854","DOIUrl":null,"url":null,"abstract":"In this paper we address a particular recommendation task: retrieving musicians suited for a place of interest (POI). We present a knowledge-based framework built upon the DBpedia ontology linking items from different domains. Graph-based algorithms are used for ranking and filtering items in a target domain (music) with respect to their relatedness to an input item in a source domain (POIs). By conducting user studies we found that users appreciate and judge more valuable the suggestions generated by the proposed approach when a novel weight spreading activation algorithm is used to compute the matching between musicians and POIs. Moreover, users perceive compositions of the suggested musicians as suited for the POIs.","PeriodicalId":199844,"journal":{"name":"MIRUM '12","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MIRUM '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390848.2390854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

In this paper we address a particular recommendation task: retrieving musicians suited for a place of interest (POI). We present a knowledge-based framework built upon the DBpedia ontology linking items from different domains. Graph-based algorithms are used for ranking and filtering items in a target domain (music) with respect to their relatedness to an input item in a source domain (POIs). By conducting user studies we found that users appreciate and judge more valuable the suggestions generated by the proposed approach when a novel weight spreading activation algorithm is used to compute the matching between musicians and POIs. Moreover, users perceive compositions of the suggested musicians as suited for the POIs.
基于知识的兴趣地点音乐检索
在本文中,我们解决了一个特殊的推荐任务:检索适合某个兴趣点(POI)的音乐家。我们提出了一个基于知识的框架,该框架建立在DBpedia本体之上,连接来自不同领域的项目。基于图的算法用于根据目标域(音乐)中的条目与源域(poi)中的输入条目的相关性对它们进行排序和过滤。通过用户研究,我们发现当使用一种新的加权扩散激活算法来计算音乐家和poi之间的匹配时,用户会更欣赏和判断由所提出的方法产生的有价值的建议。此外,用户认为建议的音乐家的作品适合poi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信