Deep Learning with Accelerated Execution: A Real-Time License Plate Localisation System

Jimmy Ma, Z. Salcic
{"title":"Deep Learning with Accelerated Execution: A Real-Time License Plate Localisation System","authors":"Jimmy Ma, Z. Salcic","doi":"10.1109/INDIN45523.2021.9557474","DOIUrl":null,"url":null,"abstract":"In this paper, a real-time, real-life, novel license plate localisation (LPL) based on deep learning (DL) and accelerated by field-programmable gate array (FPGA), and Open Visual Inference and Neural network Optimization (OpenVINO) toolkit, is proposed and prototyped. The solution was tested against two popular international research databases and achieves state-of- the-art results, proving the viability of FPGA in real-life latency- oriented application. Using novel asynchronized DL inference that prepares next result while current inference is ongoing, the system increases computational efficiency without buffering frames, allowing for reduced latency. Comparisons show that the proposed LPL system has lower latency and better performance per watt than other related solutions.","PeriodicalId":370921,"journal":{"name":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45523.2021.9557474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a real-time, real-life, novel license plate localisation (LPL) based on deep learning (DL) and accelerated by field-programmable gate array (FPGA), and Open Visual Inference and Neural network Optimization (OpenVINO) toolkit, is proposed and prototyped. The solution was tested against two popular international research databases and achieves state-of- the-art results, proving the viability of FPGA in real-life latency- oriented application. Using novel asynchronized DL inference that prepares next result while current inference is ongoing, the system increases computational efficiency without buffering frames, allowing for reduced latency. Comparisons show that the proposed LPL system has lower latency and better performance per watt than other related solutions.
加速执行的深度学习:一个实时车牌定位系统
本文提出并原型化了一种基于深度学习(DL)并由现场可编程门阵列(FPGA)和开放视觉推理和神经网络优化(OpenVINO)工具包加速的实时、真实、新颖的车牌定位(LPL)。该解决方案在两个流行的国际研究数据库中进行了测试,并取得了最先进的结果,证明了FPGA在面向延迟的实际应用中的可行性。使用新颖的异步深度学习推理,在当前推理正在进行时准备下一个结果,系统在没有缓冲帧的情况下提高了计算效率,从而减少了延迟。比较表明,该LPL系统比其他相关方案具有更低的延迟和更高的每瓦性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信