A massively parallel adaptive fast-multipole method on heterogeneous architectures

I. Lashuk, Aparna Chandramowlishwaran, Harper Langston, Tuan A. Nguyen, R. Sampath, A. Shringarpure, R. Vuduc, Lexing Ying, D. Zorin, G. Biros
{"title":"A massively parallel adaptive fast-multipole method on heterogeneous architectures","authors":"I. Lashuk, Aparna Chandramowlishwaran, Harper Langston, Tuan A. Nguyen, R. Sampath, A. Shringarpure, R. Vuduc, Lexing Ying, D. Zorin, G. Biros","doi":"10.1145/1654059.1654118","DOIUrl":null,"url":null,"abstract":"We present new scalable algorithms and a new implementation of our kernel-independent fast multipole method (Ying et al. ACM/IEEE SC '03), in which we employ both distributed memory parallelism (via MPI) and shared memory/streaming parallelism (via GPU acceleration) to rapidly evaluate two-body non-oscillatory potentials. On traditional CPU-only systems, our implementation scales well up to 30 billion unknowns on 65K cores (AMD/CRAY-based Kraken system at NSF/NICS) for highly non-uniform point distributions. On GPU-enabled systems, we achieve 30x speedup for problems of up to 256 million points on 256 GPUs (Lincoln at NSF/NCSA) over a comparable CPU-only based implementations. We achieve scalability to such extreme core counts by adopting a new approach to scalable MPI-based tree construction and partitioning, and a new reduction algorithm for the evaluation phase. For the sub-components of the evaluation phase (the direct- and approximate-interactions, the target evaluation, and the source-to-multipole translations), we use NVIDIA's CUDA framework for GPU acceleration to achieve excellent performance. To do so requires carefully constructed data structure transformations, which we describe in the paper and whose cost we show is minor. Taken together, these components show promise for ultrascalable FMM in the petascale era and beyond.","PeriodicalId":371415,"journal":{"name":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","volume":"56 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"181","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1654059.1654118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 181

Abstract

We present new scalable algorithms and a new implementation of our kernel-independent fast multipole method (Ying et al. ACM/IEEE SC '03), in which we employ both distributed memory parallelism (via MPI) and shared memory/streaming parallelism (via GPU acceleration) to rapidly evaluate two-body non-oscillatory potentials. On traditional CPU-only systems, our implementation scales well up to 30 billion unknowns on 65K cores (AMD/CRAY-based Kraken system at NSF/NICS) for highly non-uniform point distributions. On GPU-enabled systems, we achieve 30x speedup for problems of up to 256 million points on 256 GPUs (Lincoln at NSF/NCSA) over a comparable CPU-only based implementations. We achieve scalability to such extreme core counts by adopting a new approach to scalable MPI-based tree construction and partitioning, and a new reduction algorithm for the evaluation phase. For the sub-components of the evaluation phase (the direct- and approximate-interactions, the target evaluation, and the source-to-multipole translations), we use NVIDIA's CUDA framework for GPU acceleration to achieve excellent performance. To do so requires carefully constructed data structure transformations, which we describe in the paper and whose cost we show is minor. Taken together, these components show promise for ultrascalable FMM in the petascale era and beyond.
异构体系结构的大规模并行自适应快速多极方法
我们提出了新的可扩展算法和我们的核无关快速多极方法的新实现(Ying等人)。ACM/IEEE SC '03),其中我们采用分布式内存并行性(通过MPI)和共享内存/流并行性(通过GPU加速)来快速评估两体非振荡电位。在传统的只有cpu的系统上,我们的实现可以在65K核(NSF/NICS的AMD/基于crayon的Kraken系统)上扩展到300亿个未知数,用于高度不均匀的点分布。在支持gpu的系统上,我们在256个gpu (Lincoln at NSF/NCSA)上实现了30倍的加速,与同类的仅基于cpu的实现相比,可以解决高达2.56亿点的问题。我们通过采用一种新的基于mpi的可扩展树构建和划分方法,以及一种新的评估阶段约简算法,实现了这种极端核数的可扩展性。对于评估阶段的子组件(直接和近似交互,目标评估和源到多极转换),我们使用NVIDIA的CUDA框架进行GPU加速以实现出色的性能。要做到这一点,需要仔细构造数据结构转换,我们将在本文中对此进行描述,并说明其代价很小。总而言之,这些组件显示了在千兆级及以后的超扩展FMM的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信