Independent component analysis for understanding multimedia content

T. Kolenda, L. K. Hansen, J. Larsen, O. Winther
{"title":"Independent component analysis for understanding multimedia content","authors":"T. Kolenda, L. K. Hansen, J. Larsen, O. Winther","doi":"10.1109/NNSP.2002.1030096","DOIUrl":null,"url":null,"abstract":"Independent component analysis of combined text and image data from Web pages has potential for search and retrieval applications by providing more meaningful and context dependent content. It is demonstrated that ICA of combined text and image features has a synergistic effect, i.e., the retrieval classification rates increase if based on multimedia components relative to single media analysis. For this purpose a simple probabilistic supervised classifier which works from unsupervised ICA features is invoked. In addition, we demonstrate the suggested framework for automatic annotation of descriptive key words to images.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

Independent component analysis of combined text and image data from Web pages has potential for search and retrieval applications by providing more meaningful and context dependent content. It is demonstrated that ICA of combined text and image features has a synergistic effect, i.e., the retrieval classification rates increase if based on multimedia components relative to single media analysis. For this purpose a simple probabilistic supervised classifier which works from unsupervised ICA features is invoked. In addition, we demonstrate the suggested framework for automatic annotation of descriptive key words to images.
用于理解多媒体内容的独立组件分析
对来自Web页面的组合文本和图像数据进行独立的组件分析,可以为搜索和检索应用程序提供更有意义和上下文相关的内容。结果表明,结合文本和图像特征的ICA具有协同效应,即基于多媒体组件的检索分类率比基于单一媒体分析的检索分类率更高。为此,调用了一个基于无监督ICA特征的简单概率监督分类器。此外,我们还演示了建议的图像描述关键词自动标注框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信