Obtaining accurate change detection results from high-resolution satellite sensors

N. Bryant, W. Bunch, R. Fretz, P. Kim, T. Logan, M. Smyth, A. Zobrist
{"title":"Obtaining accurate change detection results from high-resolution satellite sensors","authors":"N. Bryant, W. Bunch, R. Fretz, P. Kim, T. Logan, M. Smyth, A. Zobrist","doi":"10.1109/AIPR.2012.6528199","DOIUrl":null,"url":null,"abstract":"Multi-date acquisitions of high-resolution imaging satellites (e.g. GeoEye and WorldView), can display local changes of current economic interest. However, their large data volume precludes effective manual analysis, requiring image co-registration followed by image-to-image change detection, preferably with minimal analyst attention. We have recently developed an automatic change detection procedure that minimizes false-positives. The processing steps include: (a) Conversion of both the pre- and post- images to reflectance values (this step is of critical importance when different sensors are involved); reflectance values can be either top-of-atmosphere units or have full aerosol optical depth calibration applied using bi-directional reflectance knowledge. (b) Panchromatic band image-to-image co-registration, using an orthorectified base reference image (e.g. Digital Orthophoto Quadrangle) and a digital elevation model; this step can be improved if a stereo-pair of images have been acquired on one of the image dates. (c) Pan-sharpening of the multispectral data to assure recognition of change objects at the highest resolution. (d) Characterization of multispectral data in the post-image (i.e. the background) using unsupervised cluster analysis. (e) Band ratio selection in the post-image to separate surface materials of interest from the background. (f) Preparing a pre-to-post change image. (g) Identifying locations where change has occurred involving materials of interest.","PeriodicalId":406942,"journal":{"name":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2012.6528199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Multi-date acquisitions of high-resolution imaging satellites (e.g. GeoEye and WorldView), can display local changes of current economic interest. However, their large data volume precludes effective manual analysis, requiring image co-registration followed by image-to-image change detection, preferably with minimal analyst attention. We have recently developed an automatic change detection procedure that minimizes false-positives. The processing steps include: (a) Conversion of both the pre- and post- images to reflectance values (this step is of critical importance when different sensors are involved); reflectance values can be either top-of-atmosphere units or have full aerosol optical depth calibration applied using bi-directional reflectance knowledge. (b) Panchromatic band image-to-image co-registration, using an orthorectified base reference image (e.g. Digital Orthophoto Quadrangle) and a digital elevation model; this step can be improved if a stereo-pair of images have been acquired on one of the image dates. (c) Pan-sharpening of the multispectral data to assure recognition of change objects at the highest resolution. (d) Characterization of multispectral data in the post-image (i.e. the background) using unsupervised cluster analysis. (e) Band ratio selection in the post-image to separate surface materials of interest from the background. (f) Preparing a pre-to-post change image. (g) Identifying locations where change has occurred involving materials of interest.
从高分辨率卫星传感器获得准确的变化检测结果
高分辨率成像卫星(例如GeoEye和WorldView)的多日期获取可以显示当前经济利益的当地变化。然而,它们的大数据量妨碍了有效的人工分析,需要图像共同配准,然后进行图像到图像的变化检测,最好是最少的分析师关注。我们最近开发了一种自动变更检测程序,可以最大限度地减少误报。处理步骤包括:(a)将前后图像转换为反射率值(当涉及不同的传感器时,这一步至关重要);反射率值可以是大气顶单位,也可以是使用双向反射率知识进行的全气溶胶光学深度校准。(b)全色波段图像对图像的共配准,使用正校正基准参考图像(例如数字正射影像四边形)和数字高程模型;如果在其中一个图像日期上获得了立体图像对,则可以改进此步骤。(c)对多光谱数据进行泛锐化处理,以确保以最高分辨率识别变化目标。(d)利用无监督聚类分析对后图像(即背景)中的多光谱数据进行表征。(e)在后期图像中选择带比,将感兴趣的表面材料与背景分开。(f)编制职务变动前的图像。(g)查明涉及有关材料的变化发生的地点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信