P. Minotti, G. Mussi, G. Langfelder, V. Zega, S. Facchinetti, A. Tocchio
{"title":"A system-level comparison of amplitude-vs frequency-modulation approaches exploited in low-power MEMS vibratory gyroscopes","authors":"P. Minotti, G. Mussi, G. Langfelder, V. Zega, S. Facchinetti, A. Tocchio","doi":"10.1109/ISISS.2018.8358136","DOIUrl":null,"url":null,"abstract":"Conventional MEMS vibratory gyroscopes rely on detecting the Coriolis-induced displacement amplitude along three orthogonal modes of a micro-mechanical structure. In recent years, an alternative approach based on frequency modulation, where the rate modulates the resonance frequency of the structure, has been proposed. This work tackles, from a system-level point of view, a comparison between the two solutions, aiming at a fair review of their main properties, advantages and drawbacks. The manuscript mainly focuses on low-power architectural aspects, on the sensitivity of the transduction principle against process and temperature variations, and on critical aspects related to the analog-to-digital conversion and the signal demodulation. Examples of experimental results enrich the discussion.","PeriodicalId":237642,"journal":{"name":"2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISISS.2018.8358136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Conventional MEMS vibratory gyroscopes rely on detecting the Coriolis-induced displacement amplitude along three orthogonal modes of a micro-mechanical structure. In recent years, an alternative approach based on frequency modulation, where the rate modulates the resonance frequency of the structure, has been proposed. This work tackles, from a system-level point of view, a comparison between the two solutions, aiming at a fair review of their main properties, advantages and drawbacks. The manuscript mainly focuses on low-power architectural aspects, on the sensitivity of the transduction principle against process and temperature variations, and on critical aspects related to the analog-to-digital conversion and the signal demodulation. Examples of experimental results enrich the discussion.