C. Suarez-Rodriguez, B. Jayawickrama, F. Bader, E. Dutkiewicz, M. Heimlich
{"title":"REM-based handover algorithm for next-generation multi-tier cellular networks","authors":"C. Suarez-Rodriguez, B. Jayawickrama, F. Bader, E. Dutkiewicz, M. Heimlich","doi":"10.1109/WCNC.2018.8377242","DOIUrl":null,"url":null,"abstract":"The strongest-cell criterion has been extensively used for handover algorithms during the last cellular-network generations. When network topologies become multi-layered, it results in abrupt behaviors such as the ping-pong effect as a consequence of the power gap between tiers and their irregular deployment. This effect not only affects users' quality of experience but also introduces a significant network overhead. Therefore, we propose an original handover algorithm based on predicted incomplete channel states from a Radio Environment Map to reduce this effect. The proposed algorithm is user triggered, network assisted, and fully backward compatible with LTE-A. Moreover, we evaluate the performance of our proposed algorithm against LTE-A in a two-tier cellular network for different user speeds following the guidelines outlined by the 3GPP on diverse matters (channel, mobility, wrapping, etc.). When applying realistic timing, our results reveal a highly substantial improvement in the number of ping-pong handovers regardless of the handover policy adopted in comparison to LTE-A without sacrificing users' experience; for instance, we obtain at least an order of magnitude decrease in the ping-pong rate at the expense of losing less than 9 percent in spectral efficiency.","PeriodicalId":360054,"journal":{"name":"2018 IEEE Wireless Communications and Networking Conference (WCNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Wireless Communications and Networking Conference (WCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCNC.2018.8377242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The strongest-cell criterion has been extensively used for handover algorithms during the last cellular-network generations. When network topologies become multi-layered, it results in abrupt behaviors such as the ping-pong effect as a consequence of the power gap between tiers and their irregular deployment. This effect not only affects users' quality of experience but also introduces a significant network overhead. Therefore, we propose an original handover algorithm based on predicted incomplete channel states from a Radio Environment Map to reduce this effect. The proposed algorithm is user triggered, network assisted, and fully backward compatible with LTE-A. Moreover, we evaluate the performance of our proposed algorithm against LTE-A in a two-tier cellular network for different user speeds following the guidelines outlined by the 3GPP on diverse matters (channel, mobility, wrapping, etc.). When applying realistic timing, our results reveal a highly substantial improvement in the number of ping-pong handovers regardless of the handover policy adopted in comparison to LTE-A without sacrificing users' experience; for instance, we obtain at least an order of magnitude decrease in the ping-pong rate at the expense of losing less than 9 percent in spectral efficiency.