Analysis of XDMoD/SUPReMM Data Using Machine Learning Techniques

S. Gallo, Joseph P. White, R. L. Deleon, T. Furlani, Helen Ngo, A. Patra, Matthew D. Jones, Jeffrey T. Palmer, N. Simakov, Jeanette M. Sperhac, Martins D. Innus, Thomas Yearke, Ryan Rathsam
{"title":"Analysis of XDMoD/SUPReMM Data Using Machine Learning Techniques","authors":"S. Gallo, Joseph P. White, R. L. Deleon, T. Furlani, Helen Ngo, A. Patra, Matthew D. Jones, Jeffrey T. Palmer, N. Simakov, Jeanette M. Sperhac, Martins D. Innus, Thomas Yearke, Ryan Rathsam","doi":"10.1109/CLUSTER.2015.114","DOIUrl":null,"url":null,"abstract":"Machine learning techniques were applied to job accounting and performance data for application classification. Job data were accumulated using the XDMoD monitoring technology named SUPReMM, they consist of job accounting information, application information from Lariat/XALT, and job performance data from TACC_Stats. The results clearly demonstrate that community applications have characteristic signatures which can be exploited for job classification. We conclude that machine learning can assist in classifying jobs of unknown application, in characterizing the job mixture, and in harnessing the variation in node and time dependence for further analysis.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Machine learning techniques were applied to job accounting and performance data for application classification. Job data were accumulated using the XDMoD monitoring technology named SUPReMM, they consist of job accounting information, application information from Lariat/XALT, and job performance data from TACC_Stats. The results clearly demonstrate that community applications have characteristic signatures which can be exploited for job classification. We conclude that machine learning can assist in classifying jobs of unknown application, in characterizing the job mixture, and in harnessing the variation in node and time dependence for further analysis.
使用机器学习技术分析XDMoD/SUPReMM数据
将机器学习技术应用于工作会计和性能数据,以进行应用分类。作业数据是使用名为SUPReMM的XDMoD监控技术积累的,它们由作业会计信息、来自Lariat/XALT的应用程序信息和来自TACC_Stats的作业性能数据组成。结果清楚地表明,社区应用程序具有可用于工作分类的特征签名。我们得出的结论是,机器学习可以帮助对未知应用的工作进行分类,描述工作组合,并利用节点和时间依赖性的变化进行进一步分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信