Support vector machine based on Genetic Algorithm integrated navigation fault detection parameter optimization method

Huaijian Li, Jing Fang, Xiaojing Du, Ziye Hu
{"title":"Support vector machine based on Genetic Algorithm integrated navigation fault detection parameter optimization method","authors":"Huaijian Li, Jing Fang, Xiaojing Du, Ziye Hu","doi":"10.1109/DOCS55193.2022.9967741","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of low fault detection rate of combinatorial navigation due to the mismatch of support vector machine parameters, this paper uses genetic algorithm and lattice search method to find the optimal support vector machine penalty parameter C and kernel function parameter g. The result of the search is brought into the support vector machine to obtain the classification model and finally classify the combinatorial navigation data. The results show that the genetic algorithm has a faster search speed and a higher classification accuracy.","PeriodicalId":348545,"journal":{"name":"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DOCS55193.2022.9967741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to solve the problem of low fault detection rate of combinatorial navigation due to the mismatch of support vector machine parameters, this paper uses genetic algorithm and lattice search method to find the optimal support vector machine penalty parameter C and kernel function parameter g. The result of the search is brought into the support vector machine to obtain the classification model and finally classify the combinatorial navigation data. The results show that the genetic algorithm has a faster search speed and a higher classification accuracy.
基于遗传算法的支持向量机集成导航故障检测参数优化方法
为了解决由于支持向量机参数不匹配导致组合导航故障检出率低的问题,本文采用遗传算法和点阵搜索方法寻找最优的支持向量机惩罚参数C和核函数参数g,将搜索结果带入支持向量机得到分类模型,最终对组合导航数据进行分类。结果表明,遗传算法具有更快的搜索速度和更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信