Cell traffic prediction using joint spatio-temporal information

Enrico Lovisotto, E. Vianello, Davide Cazzaro, Michele Polese, Federico Chiariotti, Daniel Zucchetto, A. Zanella, M. Zorzi
{"title":"Cell traffic prediction using joint spatio-temporal information","authors":"Enrico Lovisotto, E. Vianello, Davide Cazzaro, Michele Polese, Federico Chiariotti, Daniel Zucchetto, A. Zanella, M. Zorzi","doi":"10.1109/MOCAST.2017.7937674","DOIUrl":null,"url":null,"abstract":"In future cellular networks, the ability to predict network parameters such as cell load will be a key enabler of several proposed adaptation and resource allocation techniques. In this study, we consider a joint exploitation of spatio-temporal data to improve the prediction accuracy of standard regression methods. We test several such methods from the literature on a publicly available dataset and document the advantages of the proposed approach.","PeriodicalId":202381,"journal":{"name":"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MOCAST.2017.7937674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In future cellular networks, the ability to predict network parameters such as cell load will be a key enabler of several proposed adaptation and resource allocation techniques. In this study, we consider a joint exploitation of spatio-temporal data to improve the prediction accuracy of standard regression methods. We test several such methods from the literature on a publicly available dataset and document the advantages of the proposed approach.
基于联合时空信息的小区交通预测
在未来的蜂窝网络中,预测网络参数(如蜂窝负载)的能力将成为几种提出的适应和资源分配技术的关键推动因素。在本研究中,我们考虑联合利用时空数据来提高标准回归方法的预测精度。我们在一个公开可用的数据集上测试了文献中的几种这样的方法,并记录了所提出方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信