Two-Stage Multi-Organ Automatic Segmentation with Low GPU Memory Occupancy

Yi Lv, Junchen Wang
{"title":"Two-Stage Multi-Organ Automatic Segmentation with Low GPU Memory Occupancy","authors":"Yi Lv, Junchen Wang","doi":"10.1109/WRCSARA57040.2022.9903976","DOIUrl":null,"url":null,"abstract":"Abdominal multi organ segmentation is of great significance in medical diagnosis and research. As the abdominal CT usually has a high resolution and a high image size, automatic segmentation of the abdominal organs demands a high configuration of hardware. In this paper, we proposed a low GPU memory occupied two stage fully supervised automatic segmentation framework for abdomina113 organs: liver, spleen, pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena cava, right adrenal gland, left adrenal gland, and duodenum, and designed a lightweight 3D CNN refer to as Tiny-CED Net. The proposed Tiny-CED Net can accurately complete the automatic segmentation of the whole abdominal CT with the GPU memory occupation <2GB. The results show that the average DSC of our method reached 0.83. The average time consumption and max GPU memory occupied are less than 25s and 2GB.","PeriodicalId":106730,"journal":{"name":"2022 WRC Symposium on Advanced Robotics and Automation (WRC SARA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 WRC Symposium on Advanced Robotics and Automation (WRC SARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WRCSARA57040.2022.9903976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abdominal multi organ segmentation is of great significance in medical diagnosis and research. As the abdominal CT usually has a high resolution and a high image size, automatic segmentation of the abdominal organs demands a high configuration of hardware. In this paper, we proposed a low GPU memory occupied two stage fully supervised automatic segmentation framework for abdomina113 organs: liver, spleen, pancreas, right kidney, left kidney, stomach, gallbladder, esophagus, aorta, inferior vena cava, right adrenal gland, left adrenal gland, and duodenum, and designed a lightweight 3D CNN refer to as Tiny-CED Net. The proposed Tiny-CED Net can accurately complete the automatic segmentation of the whole abdominal CT with the GPU memory occupation <2GB. The results show that the average DSC of our method reached 0.83. The average time consumption and max GPU memory occupied are less than 25s and 2GB.
低GPU内存占用的两阶段多器官自动分割
腹部多器官分割在医学诊断和研究中具有重要意义。由于腹部CT通常具有高分辨率和高图像尺寸,因此腹部器官的自动分割对硬件配置要求很高。本文提出了一种低GPU内存占用的腹部器官肝、脾、胰、右肾、左肾、胃、胆囊、食道、主动脉、下腔静脉、右肾上腺、左肾上腺、十二指肠两阶段全监督自动分割框架,并设计了一个轻量级的3D CNN,称为Tiny-CED Net。所提出的Tiny-CED Net能够在GPU内存占用<2GB的情况下,准确完成腹部CT整幅图像的自动分割。结果表明,该方法的平均DSC可达0.83。平均耗时小于25s,最大GPU内存占用小于2GB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信