Towards privacy-preserving computing on distributed electronic health record data

MDS '13 Pub Date : 2013-12-09 DOI:10.1145/2541534.2541593
K. Y. Yigzaw, J. G. Bellika, Anders Andersen, G. Hartvigsen, C. Fernández-Llatas
{"title":"Towards privacy-preserving computing on distributed electronic health record data","authors":"K. Y. Yigzaw, J. G. Bellika, Anders Andersen, G. Hartvigsen, C. Fernández-Llatas","doi":"10.1145/2541534.2541593","DOIUrl":null,"url":null,"abstract":"The paper reports on work in progress towards construction of a peer-to-peer framework for privacy preserving computing on distributed electronic health data. The framework supports three different types of federated queries. For privacy-preserving computing, we proposed distributed secure multi-party computation (SMC), where each peer is only involved in secure computations with some of the peers. We hypothesize distributed SMC could enable to achieve more efficient and scalable computing solutions. The architecture of the framework is also described.","PeriodicalId":318237,"journal":{"name":"MDS '13","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MDS '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2541534.2541593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The paper reports on work in progress towards construction of a peer-to-peer framework for privacy preserving computing on distributed electronic health data. The framework supports three different types of federated queries. For privacy-preserving computing, we proposed distributed secure multi-party computation (SMC), where each peer is only involved in secure computations with some of the peers. We hypothesize distributed SMC could enable to achieve more efficient and scalable computing solutions. The architecture of the framework is also described.
分布式电子病历数据的隐私保护计算研究
本文报告了在分布式电子健康数据上进行隐私保护计算的点对点框架的构建工作。该框架支持三种不同类型的联邦查询。对于隐私保护计算,我们提出了分布式安全多方计算(SMC),其中每个对等体只参与与某些对等体的安全计算。我们假设分布式SMC可以实现更高效和可扩展的计算解决方案。本文还描述了该框架的体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信