A hybrid evolutionary approach for optimal fuzzy classifier design

A. S. Karthik Kannan, P. Thanapal
{"title":"A hybrid evolutionary approach for optimal fuzzy classifier design","authors":"A. S. Karthik Kannan, P. Thanapal","doi":"10.1109/ICCCCT.2010.5670725","DOIUrl":null,"url":null,"abstract":"One of the important issues in the design of fuzzy classifier is the formation of fuzzy if-then rules and the membership functions. This paper presents a Niched Pareto Genetic Algorithm (NPGA) approach to obtain the optimal rule-set and the membership function. To develop the fuzzy system the rule set and the membership functions are encoded into the chromosome and evolved simultaneously using NPGA. The performance of the proposed approach is demonstrated through development of fuzzy classifier for Iris data available in the UCI machine learning repository. From the simulation study, it is found that that NPGA produces a fuzzy classifier which has minimum number of rules and high classification accuracy compared with the existing methods.","PeriodicalId":250834,"journal":{"name":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 INTERNATIONAL CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING TECHNOLOGIES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCCT.2010.5670725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One of the important issues in the design of fuzzy classifier is the formation of fuzzy if-then rules and the membership functions. This paper presents a Niched Pareto Genetic Algorithm (NPGA) approach to obtain the optimal rule-set and the membership function. To develop the fuzzy system the rule set and the membership functions are encoded into the chromosome and evolved simultaneously using NPGA. The performance of the proposed approach is demonstrated through development of fuzzy classifier for Iris data available in the UCI machine learning repository. From the simulation study, it is found that that NPGA produces a fuzzy classifier which has minimum number of rules and high classification accuracy compared with the existing methods.
模糊分类器优化设计的混合进化方法
模糊分类器设计中的一个重要问题是模糊if-then规则和隶属函数的形成。提出了一种小生境帕累托遗传算法(NPGA)来求解最优规则集和隶属函数。为了开发模糊系统,将规则集和隶属函数编码到染色体中,并使用NPGA进行进化。通过开发UCI机器学习存储库中可用的虹膜数据的模糊分类器,证明了所提出方法的性能。仿真研究表明,与现有方法相比,NPGA生成的模糊分类器规则数最少,分类精度高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信