SVO triple based Latent Semantic Analysis for recognising textual entailment

G. Burek, Christian Pietsch, A. Roeck
{"title":"SVO triple based Latent Semantic Analysis for recognising textual entailment","authors":"G. Burek, Christian Pietsch, A. Roeck","doi":"10.3115/1654536.1654559","DOIUrl":null,"url":null,"abstract":"Latent Semantic Analysis has only recently been applied to textual entailment recognition. However, these efforts have suffered from inadequate bag of words vector representations. Our prototype implementation for the Third Recognising Textual Entailment Challenge (RTE-3) improves the approach by applying it to vector representations that contain semi-structured representations of words. It uses variable size n-grams of word stems to model independently verbs, subjects and objects displayed in textual statements. The system performance shows positive results and provides insights about how to improve them further.","PeriodicalId":190678,"journal":{"name":"ACL-PASCAL@ACL","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACL-PASCAL@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1654536.1654559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Latent Semantic Analysis has only recently been applied to textual entailment recognition. However, these efforts have suffered from inadequate bag of words vector representations. Our prototype implementation for the Third Recognising Textual Entailment Challenge (RTE-3) improves the approach by applying it to vector representations that contain semi-structured representations of words. It uses variable size n-grams of word stems to model independently verbs, subjects and objects displayed in textual statements. The system performance shows positive results and provides insights about how to improve them further.
基于SVO三重语义分析的文本蕴涵识别
潜在语义分析最近才被应用于文本蕴涵识别。然而,这些努力都受到了词向量表示不足的影响。我们第三次文本蕴涵挑战(RTE-3)的原型实现通过将其应用于包含单词半结构化表示的向量表示来改进该方法。它使用可变大小的词干n-grams来独立模拟文本语句中显示的动词、主语和宾语。系统性能显示了积极的结果,并提供了如何进一步改进它们的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信