Exact-Kernel Thin-Wire MoM with Geometric Representation by Bezier Curves

T. Rylander, M. Botha
{"title":"Exact-Kernel Thin-Wire MoM with Geometric Representation by Bezier Curves","authors":"T. Rylander, M. Botha","doi":"10.1109/EMCEurope51680.2022.9900954","DOIUrl":null,"url":null,"abstract":"Electromagnetic field simulation of wire structures is important to high-frequency electromagnetic engineering applications, including antenna design and electromagnetic compatibility studies. This paper exploits the electric field integral equation to solve for the induced current on a curved thin-wire, which is modelled as a perfect electric conductor (PEC). The singular part of the Green's function is integrated by means of the complete elliptic integral of the first kind. The geometry of the curved wire is described by Bezier-curve segments, where this approach is particularly useful for problems where a smooth wire-geometry requires better representation than the current at (typically) low frequencies. The formulation is tested on the scattering from a closed PEC ring shaped as a circle for three different frequencies. As the number of elements is increased, the induced currents tend toward the reference solution provided by FEKO.","PeriodicalId":268262,"journal":{"name":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEurope51680.2022.9900954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electromagnetic field simulation of wire structures is important to high-frequency electromagnetic engineering applications, including antenna design and electromagnetic compatibility studies. This paper exploits the electric field integral equation to solve for the induced current on a curved thin-wire, which is modelled as a perfect electric conductor (PEC). The singular part of the Green's function is integrated by means of the complete elliptic integral of the first kind. The geometry of the curved wire is described by Bezier-curve segments, where this approach is particularly useful for problems where a smooth wire-geometry requires better representation than the current at (typically) low frequencies. The formulation is tested on the scattering from a closed PEC ring shaped as a circle for three different frequencies. As the number of elements is increased, the induced currents tend toward the reference solution provided by FEKO.
用Bezier曲线表示的精确核细线MoM
导线结构的电磁场仿真在高频电磁工程应用中具有重要意义,包括天线设计和电磁兼容性研究。本文利用电场积分方程求解了弯曲细导线上的感应电流,细导线被建模为完美电导体。利用第一类完全椭圆积分对格林函数的奇异部分进行积分。弯曲导线的几何形状由bezier曲线段描述,这种方法对于光滑导线几何形状需要比(通常)低频电流更好的表示的问题特别有用。在三种不同频率下,对封闭的环形PEC环的散射进行了测试。随着元件数量的增加,感应电流倾向于FEKO提供的参考溶液。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信