Neural Transduction of Letter Position Dyslexia using an Anagram Matrix Representation

A. Bleiweiss
{"title":"Neural Transduction of Letter Position Dyslexia using an Anagram Matrix Representation","authors":"A. Bleiweiss","doi":"10.18653/v1/2020.bionlp-1.16","DOIUrl":null,"url":null,"abstract":"Research on analyzing reading patterns of dyslectic children has mainly been driven by classifying dyslexia types offline. We contend that a framework to remedy reading errors inline is more far-reaching and will help to further advance our understanding of this impairment. In this paper, we propose a simple and intuitive neural model to reinstate migrating words that transpire in letter position dyslexia, a visual analysis deficit to the encoding of character order within a word. Introduced by the anagram matrix representation of an input verse, the novelty of our work lies in the expansion from one to a two dimensional context window for training. This warrants words that only differ in the disposition of letters to remain interpreted semantically similar in the embedding space. Subject to the apparent constraints of the self-attention transformer architecture, our model achieved a unigram BLEU score of 40.6 on our reconstructed dataset of the Shakespeare sonnets.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"24 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.bionlp-1.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Research on analyzing reading patterns of dyslectic children has mainly been driven by classifying dyslexia types offline. We contend that a framework to remedy reading errors inline is more far-reaching and will help to further advance our understanding of this impairment. In this paper, we propose a simple and intuitive neural model to reinstate migrating words that transpire in letter position dyslexia, a visual analysis deficit to the encoding of character order within a word. Introduced by the anagram matrix representation of an input verse, the novelty of our work lies in the expansion from one to a two dimensional context window for training. This warrants words that only differ in the disposition of letters to remain interpreted semantically similar in the embedding space. Subject to the apparent constraints of the self-attention transformer architecture, our model achieved a unigram BLEU score of 40.6 on our reconstructed dataset of the Shakespeare sonnets.
用变位矩阵表示字母位置阅读障碍的神经转导
分析阅读障碍儿童阅读模式的研究主要是通过对离线阅读障碍类型进行分类来推动的。我们认为,一个框架来补救内联读取错误是更深远的,将有助于进一步推进我们对这种损害的理解。在本文中,我们提出了一个简单而直观的神经模型来恢复在字母位置阅读障碍中发生的迁移词,这是一种对单词内字符顺序编码的视觉分析缺陷。通过输入诗句的变位矩阵表示,我们的工作的新颖之处在于将训练的上下文窗口从一维扩展到二维。这保证了仅在字母配置上不同的单词在嵌入空间中保持语义上的解释相似。受自关注转换器架构的明显约束,我们的模型在重建的莎士比亚十四行诗数据集上获得了40.6的unigram BLEU分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信