Segmentation and detection of media adventitia coronary artery boundary in medical imaging intravascular ultrasound using otsu thresholding

Hannah Sofian, J. Than, N. Mohd Noor, H. Dao
{"title":"Segmentation and detection of media adventitia coronary artery boundary in medical imaging intravascular ultrasound using otsu thresholding","authors":"Hannah Sofian, J. Than, N. Mohd Noor, H. Dao","doi":"10.1109/ICBAPS.2015.7292221","DOIUrl":null,"url":null,"abstract":"In this paper we present an automated segmentation method to detect the boundary between adventitia and media on the cross sectional view of the artery of patients who have plaques. The problem encounter is that the boundaries of the adventitia, media, intima and lumen are embedded when plaques exist. Moreover, the artery disease has damaged the tissue layers. This paper proposed a method in segmenting and detecting the outer boundary which is the media adventitia area of the artery using intravascular ultrasound (IVUS) images. The proposed method for segmentation is to use Otsu thresholding, followed by empirical thresholding and binary - morphological operation. The data used in this study was 10 samples from dataset B of IVUS images, courtesy of Simone Balocco (Training set, Computer Vision Center, Bellaterra, Universitat de Barcelona, Dept. Matemàtica Aplicada i Anàlisi, Barcelona). The proposed method shows promising result in detecting and segmenting the media adventitia boundary of the IVUS images.","PeriodicalId":243293,"journal":{"name":"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on BioSignal Analysis, Processing and Systems (ICBAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBAPS.2015.7292221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper we present an automated segmentation method to detect the boundary between adventitia and media on the cross sectional view of the artery of patients who have plaques. The problem encounter is that the boundaries of the adventitia, media, intima and lumen are embedded when plaques exist. Moreover, the artery disease has damaged the tissue layers. This paper proposed a method in segmenting and detecting the outer boundary which is the media adventitia area of the artery using intravascular ultrasound (IVUS) images. The proposed method for segmentation is to use Otsu thresholding, followed by empirical thresholding and binary - morphological operation. The data used in this study was 10 samples from dataset B of IVUS images, courtesy of Simone Balocco (Training set, Computer Vision Center, Bellaterra, Universitat de Barcelona, Dept. Matemàtica Aplicada i Anàlisi, Barcelona). The proposed method shows promising result in detecting and segmenting the media adventitia boundary of the IVUS images.
otsu阈值在医学成像血管内超声中冠状动脉外膜边界的分割与检测
在本文中,我们提出了一种自动分割方法,以检测有斑块的患者动脉横切面上的外膜和介质之间的边界。遇到的问题是,当斑块存在时,外膜、中膜、内膜和管腔的边界被嵌入。此外,动脉疾病已经破坏了组织层。本文提出了一种利用血管内超声(IVUS)图像分割和检测动脉外边界(中外膜区域)的方法。本文提出的分割方法是先采用Otsu阈值分割,再采用经验阈值分割和二值形态分割。本研究使用的数据来自IVUS图像数据集B的10个样本,由Simone Balocco提供(训练集,计算机视觉中心,Bellaterra,巴塞罗那大学,Dept. Matemàtica applied i Anàlisi,巴塞罗那)。该方法在IVUS图像介质外边界的检测和分割方面取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信