Convergence Study of Local Hierarchical Functions for Free Vibration Analysis with Application to Multi-Step Beams

R.K. Dangarwala, K. N. Nagendra Gopal
{"title":"Convergence Study of Local Hierarchical Functions for Free Vibration Analysis with Application to Multi-Step Beams","authors":"R.K. Dangarwala, K. N. Nagendra Gopal","doi":"10.4203/ccc.3.19.2","DOIUrl":null,"url":null,"abstract":"The free vibration analysis of homogeneous uniform beams, plates and multi-step beams by the Ritz method, using local Bardell’s polynomials and trigonometric functions, is studied in this paper. The first part of the paper presents a comparative study of the convergence of hierarchical sets under both p-and h -refinements. To this end, a beam and plate are modelled using a single element with a varied number of local functions and multiple elements with a fixed number of local functions. In the second part the above sets of local hierarchical functions are applied for the free vibration analysis of a multi-step beam. With the aim to improve the accuracy of the fundamental mode when using local trigonometric functions, a set of modified local trigonometric functions is proposed to facilitate the satisfaction of the global natural boundary conditions. The use of modified local trigonometric functions with the satisfaction of global natural boundary conditions is shown to significantly improve the accuracy and convergence of the fundamental mode while also converging for higher modes. Moreover, it is also shown to converge under h -refinements in contrast to the divergence observed when using standard trigonometric functions.","PeriodicalId":143311,"journal":{"name":"Proceedings of the Fourteenth International Conference on Computational Structures Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourteenth International Conference on Computational Structures Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4203/ccc.3.19.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The free vibration analysis of homogeneous uniform beams, plates and multi-step beams by the Ritz method, using local Bardell’s polynomials and trigonometric functions, is studied in this paper. The first part of the paper presents a comparative study of the convergence of hierarchical sets under both p-and h -refinements. To this end, a beam and plate are modelled using a single element with a varied number of local functions and multiple elements with a fixed number of local functions. In the second part the above sets of local hierarchical functions are applied for the free vibration analysis of a multi-step beam. With the aim to improve the accuracy of the fundamental mode when using local trigonometric functions, a set of modified local trigonometric functions is proposed to facilitate the satisfaction of the global natural boundary conditions. The use of modified local trigonometric functions with the satisfaction of global natural boundary conditions is shown to significantly improve the accuracy and convergence of the fundamental mode while also converging for higher modes. Moreover, it is also shown to converge under h -refinements in contrast to the divergence observed when using standard trigonometric functions.
自由振动分析的局部层次函数收敛性研究及多阶梁的应用
本文采用局部巴德尔多项式和三角函数,研究了均质均匀梁、板和多阶梁的自由振动分析方法。本文第一部分比较研究了p-精和h -精下层次集的收敛性。为此,梁和板采用具有不同数量局部函数的单个单元和具有固定数量局部函数的多个单元进行建模。第二部分将上述局部层次函数集应用于多阶梁的自由振动分析。为了提高使用局部三角函数时基本模态的精度,提出了一组修正的局部三角函数,以满足全局自然边界条件。采用满足全局自然边界条件的修正局部三角函数可显著提高基本模态的精度和收敛性,同时对高阶模态也具有收敛性。此外,与使用标准三角函数时观察到的散度相比,它在h -细化下也显示收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信