Large finite structures with few L/sup /spl kappa//-types

Martin Grohe
{"title":"Large finite structures with few L/sup /spl kappa//-types","authors":"Martin Grohe","doi":"10.1109/LICS.1997.614949","DOIUrl":null,"url":null,"abstract":"Far each /spl kappa//spl ges/3, we show that there is no recursive bound for the size of the smallest finite model of an L/sup /spl kappa//-theory in terms of its /spl kappa/-size. Here L/sup /spl kappa// denotes the /spl kappa/-variable fragment of first-order logic. An L/sup /spl kappa//-theory is a maximal consistent set of L/sup /spl kappa//-sentences, and the /spl kappa/-size of an L/sup /spl kappa//-theory is the number of L/sup /spl kappa//-types realized in its models. Our result answers a question of Dawar (1993). As a corollary, we obtain that for /spl kappa//spl ges/3 the so-called L/sup /spl kappa//-invariants, which characterize structures up to equivalence in L/sup /spl kappa//, cannot be recursively inverted.","PeriodicalId":272903,"journal":{"name":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1997.614949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Far each /spl kappa//spl ges/3, we show that there is no recursive bound for the size of the smallest finite model of an L/sup /spl kappa//-theory in terms of its /spl kappa/-size. Here L/sup /spl kappa// denotes the /spl kappa/-variable fragment of first-order logic. An L/sup /spl kappa//-theory is a maximal consistent set of L/sup /spl kappa//-sentences, and the /spl kappa/-size of an L/sup /spl kappa//-theory is the number of L/sup /spl kappa//-types realized in its models. Our result answers a question of Dawar (1993). As a corollary, we obtain that for /spl kappa//spl ges/3 the so-called L/sup /spl kappa//-invariants, which characterize structures up to equivalence in L/sup /spl kappa//, cannot be recursively inverted.
具有少量L/sup /spl kappa//-型的大型有限结构
对于每一个/spl kappa//spl kappa// 3,我们证明了L/sup /spl kappa//-理论的最小有限模型的大小就其/spl kappa/-大小而言没有递归界。这里L/sup /spl kappa//表示一阶逻辑的/spl kappa/-变量片段。L/sup /spl kappa//-理论是L/sup /spl kappa//-句子的最大一致集,L/sup /spl kappa//-理论的/spl kappa//-大小是其模型中实现的L/sup /spl kappa//-类型的数量。我们的结果回答了Dawar(1993)的一个问题。作为推论,我们得到对于/spl kappa//spl ges/3,表征L/sup /spl kappa//中等价结构的所谓L/sup /spl kappa//-不变量不能递归反转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信