Improving Neural Networks Sensitivity Extraction of Electromagnetic Devices

D.A. Vieira, J. Vasconcelos, W. Caminhas
{"title":"Improving Neural Networks Sensitivity Extraction of Electromagnetic Devices","authors":"D.A. Vieira, J. Vasconcelos, W. Caminhas","doi":"10.1109/CEFC-06.2006.1633090","DOIUrl":null,"url":null,"abstract":"This paper applies the parallel layer perceptron network trained with the minimum gradient method (PLP-MGM) to the problem of sensitivity extraction of electromagnetic devices. The networks trained with the MGM are less dependent of user's defined parameters, as, for instance, the number of neurons. Some results are presented considering the sensitivity extraction of a loudspeaker magnet assembly, and they show the effectiveness of the proposed approach","PeriodicalId":262549,"journal":{"name":"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEFC-06.2006.1633090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper applies the parallel layer perceptron network trained with the minimum gradient method (PLP-MGM) to the problem of sensitivity extraction of electromagnetic devices. The networks trained with the MGM are less dependent of user's defined parameters, as, for instance, the number of neurons. Some results are presented considering the sensitivity extraction of a loudspeaker magnet assembly, and they show the effectiveness of the proposed approach
改进电磁器件的神经网络灵敏度提取
本文将最小梯度法训练的并行层感知器网络(PLP-MGM)应用于电磁器件灵敏度提取问题。使用MGM训练的网络较少依赖于用户定义的参数,例如神经元的数量。以扬声器磁铁组件的灵敏度提取为例,给出了一些结果,表明了该方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信