An intelligent component retrieval system using conversational CBR

Mingyang Gu, Xin Tong
{"title":"An intelligent component retrieval system using conversational CBR","authors":"Mingyang Gu, Xin Tong","doi":"10.1109/CMPSAC.2004.1342670","DOIUrl":null,"url":null,"abstract":"One difficulty in component retrieval comes from users' incapability to well define their queries. In this paper, we propose a conversational component retrieval model (CCRM) to alleviate this difficulty. In CCRM, a knowledge-intensive conversational case-based reasoning method is adopted to infer potential knowledge from current known knowledge, calculate the context-based semantic similarities between users' queries and stored components, and prompt users the most discriminative questions to extract more information to refine their component queries interactively and incrementally.","PeriodicalId":355273,"journal":{"name":"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th Annual International Computer Software and Applications Conference, 2004. COMPSAC 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CMPSAC.2004.1342670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One difficulty in component retrieval comes from users' incapability to well define their queries. In this paper, we propose a conversational component retrieval model (CCRM) to alleviate this difficulty. In CCRM, a knowledge-intensive conversational case-based reasoning method is adopted to infer potential knowledge from current known knowledge, calculate the context-based semantic similarities between users' queries and stored components, and prompt users the most discriminative questions to extract more information to refine their component queries interactively and incrementally.
基于会话式CBR的智能构件检索系统
组件检索的一个困难来自于用户不能很好地定义他们的查询。在本文中,我们提出了一个会话组件检索模型(CCRM)来缓解这一困难。在CCRM中,采用知识密集型的基于会话案例的推理方法,从当前已知的知识中推断出潜在的知识,计算用户查询与存储组件之间基于上下文的语义相似度,并提示用户最具判别性的问题,以交互和增量的方式提取更多信息,以改进其组件查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信