Incorporating syllable duration into line-detection-based spoken term detection

Teppei Ohno, T. Akiba
{"title":"Incorporating syllable duration into line-detection-based spoken term detection","authors":"Teppei Ohno, T. Akiba","doi":"10.1109/SLT.2012.6424223","DOIUrl":null,"url":null,"abstract":"A conventional method for spoken term detection (STD) is to apply approximate string matching to subword sequences in a spoken document obtained by speech recognition. An STD method that considers string matching as line detection in a syllable distance plane has been proposed. While this has demonstrated fast ordered-by-distance detections, it has still suffered from the insertion and deletion errors introduced by the speech recognition. In this work, we aim to improve detection performance by employing syllable-duration information. The proposed method enables robust detection by introducing a distance plane that uses frames as units instead of using syllables as units. Our experimental evaluation showed that the incorporation of syllable-duration achieved higher detection performance in high-recall regions.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A conventional method for spoken term detection (STD) is to apply approximate string matching to subword sequences in a spoken document obtained by speech recognition. An STD method that considers string matching as line detection in a syllable distance plane has been proposed. While this has demonstrated fast ordered-by-distance detections, it has still suffered from the insertion and deletion errors introduced by the speech recognition. In this work, we aim to improve detection performance by employing syllable-duration information. The proposed method enables robust detection by introducing a distance plane that uses frames as units instead of using syllables as units. Our experimental evaluation showed that the incorporation of syllable-duration achieved higher detection performance in high-recall regions.
将音节长度纳入基于行检测的口语术语检测
传统的语音词检测方法是对语音识别得到的语音文档中的子词序列进行近似字符串匹配。提出了一种在音节距离平面上将字符串匹配作为行检测的STD方法。虽然这证明了快速的按距离排序检测,但它仍然受到语音识别引入的插入和删除错误的影响。在这项工作中,我们的目标是通过使用音节长度信息来提高检测性能。提出的方法通过引入以帧为单位而不是以音节为单位的距离平面来实现鲁棒检测。实验结果表明,结合音节时长的方法在高召回区域具有较高的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信