Face recognition with renewable and privacy preserving binary templates

T. Kevenaar, G. Schrijen, M. V. D. Veen, A. Akkermans, F. Zuo
{"title":"Face recognition with renewable and privacy preserving binary templates","authors":"T. Kevenaar, G. Schrijen, M. V. D. Veen, A. Akkermans, F. Zuo","doi":"10.1109/AUTOID.2005.24","DOIUrl":null,"url":null,"abstract":"This paper considers generating binary feature vectors from biometric face data such that their privacy can be protected using recently introduced helper data systems. We explain how the binary feature vectors can be derived and investigate their statistical properties. Experimental results for a subset of the FERET and Caltech databases show that there is only a slight degradation in classification results when using the binary rather than the real-valued feature vectors. Finally, the scheme to extract the binary vectors is combined with a helper data scheme leading to renewable and privacy preserving facial templates with acceptable classification results provided that the within-class variation is not too large.","PeriodicalId":206458,"journal":{"name":"Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"154","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUTOID.2005.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 154

Abstract

This paper considers generating binary feature vectors from biometric face data such that their privacy can be protected using recently introduced helper data systems. We explain how the binary feature vectors can be derived and investigate their statistical properties. Experimental results for a subset of the FERET and Caltech databases show that there is only a slight degradation in classification results when using the binary rather than the real-valued feature vectors. Finally, the scheme to extract the binary vectors is combined with a helper data scheme leading to renewable and privacy preserving facial templates with acceptable classification results provided that the within-class variation is not too large.
具有可更新和保护隐私的二进制模板的人脸识别
本文考虑使用最近引入的辅助数据系统从生物特征面部数据中生成二进制特征向量,从而保护其隐私。我们解释了二进制特征向量是如何推导出来的,并研究了它们的统计性质。FERET和Caltech数据库的一个子集的实验结果表明,当使用二值特征向量而不是实值特征向量时,分类结果只有轻微的下降。最后,将二值向量提取方案与辅助数据方案相结合,在类内变化不太大的情况下,得到可更新且保护隐私的面部模板,分类结果可接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信