{"title":"Using Multidimensional Clustering Based Collaborative Filtering Approach Improving Recommendation Diversity","authors":"Xiaohui Li, T. Murata","doi":"10.1109/WI-IAT.2012.229","DOIUrl":null,"url":null,"abstract":"In this paper, we present a hybrid recommendation approach for discovering potential preferences of individual users. The proposed approach provides a flexible solution that incorporates multidimensional clustering into a collaborative filtering recommendation model to provide a quality recommendation. This facilitates to obtain user clusters which have diverse preference from multi-view for improving effectiveness and diversity of recommendation. The presented algorithm works in three phases: data preprocessing and multidimensional clustering, choosing the appropriate clusters and recommending for the target user. The performance of proposed approach is evaluated using a public movie dataset and compared with two representative recommendation algorithms. The empirical results demonstrate that our proposed approach is likely to trade-off on increasing the diversity of recommendations while maintaining the accuracy of recommendations.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39
Abstract
In this paper, we present a hybrid recommendation approach for discovering potential preferences of individual users. The proposed approach provides a flexible solution that incorporates multidimensional clustering into a collaborative filtering recommendation model to provide a quality recommendation. This facilitates to obtain user clusters which have diverse preference from multi-view for improving effectiveness and diversity of recommendation. The presented algorithm works in three phases: data preprocessing and multidimensional clustering, choosing the appropriate clusters and recommending for the target user. The performance of proposed approach is evaluated using a public movie dataset and compared with two representative recommendation algorithms. The empirical results demonstrate that our proposed approach is likely to trade-off on increasing the diversity of recommendations while maintaining the accuracy of recommendations.