Asymptotically efficient hypercube algorithms for computational geometry

P. MacKenzie, Q. Stout
{"title":"Asymptotically efficient hypercube algorithms for computational geometry","authors":"P. MacKenzie, Q. Stout","doi":"10.1109/fmpc.1990.89429","DOIUrl":null,"url":null,"abstract":"Hypercube algorithms that solve many fundamental computational geometry problems are presented. The algorithms use decomposition techniques, which enable them to outperform asymptotically the fastest previous algorithms for these problems. Previous algorithms all run in Theta (log/sup 2/n) time, even when using a sorting method that runs in o(log/sup 2/n) time. The new algorithms use a recently discovered o(log/sup 2/n) time sorting method to improve their asymptotic speed to o(log/sup 2/n). If sorting runs in Theta (Sort(n)) time, the algorithms for two-set dominance counting, 3-D maxima, closest pair, and all points nearest neighbors run in Theta (Sort(n)) log(log n) time, and the algorithms for triangulation and visibility from a point run in Theta (Sort(n)) time.<<ETX>>","PeriodicalId":193332,"journal":{"name":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1990 Proceedings] The Third Symposium on the Frontiers of Massively Parallel Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fmpc.1990.89429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Hypercube algorithms that solve many fundamental computational geometry problems are presented. The algorithms use decomposition techniques, which enable them to outperform asymptotically the fastest previous algorithms for these problems. Previous algorithms all run in Theta (log/sup 2/n) time, even when using a sorting method that runs in o(log/sup 2/n) time. The new algorithms use a recently discovered o(log/sup 2/n) time sorting method to improve their asymptotic speed to o(log/sup 2/n). If sorting runs in Theta (Sort(n)) time, the algorithms for two-set dominance counting, 3-D maxima, closest pair, and all points nearest neighbors run in Theta (Sort(n)) log(log n) time, and the algorithms for triangulation and visibility from a point run in Theta (Sort(n)) time.<>
计算几何的渐近高效超立方算法
提出了解决许多基本计算几何问题的超立方体算法。这些算法使用分解技术,这使得它们在这些问题上的性能渐近地超过了以前最快的算法。以前的算法都在Theta (log/sup 2/n)时间内运行,即使使用的排序方法运行时间为o(log/sup 2/n)。新算法使用最近发现的o(log/sup 2/n)时间排序方法将其渐近速度提高到o(log/sup 2/n)。如果排序在Theta (Sort(n))时间内运行,则两集优势计数,3d最大值,最接近对和所有近邻点的算法在Theta (Sort(n)) log(log n)时间内运行,而三角测量和从一个点可见性的算法在Theta (Sort(n))时间内运行
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信