AN EMPIRICAL BAYES INFORMATION CRITERION FOR SELECTING VARIABLES IN LINEAR MIXED MODELS

T. Kubokawa, M. Srivastava
{"title":"AN EMPIRICAL BAYES INFORMATION CRITERION FOR SELECTING VARIABLES IN LINEAR MIXED MODELS","authors":"T. Kubokawa, M. Srivastava","doi":"10.14490/JJSS.40.111","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of selecting variables in linear mixed models (LMM). We propose the Empirical Bayes Information Criterion (EBIC) using a partial prior information on the parameters of interest. Specifically EBIC incorporates a non-subjective prior distribution on regression coefficients with an unknown hyper-parameter, but it is free from the setup of a prior information on the nuisance parameters like variance components. It is shown that EBIC not only has the nice asymptotic property of consistency as a variable selection, but also performs better in small and large sample sizes than the conventional methods like AIC, conditional AIC and BIC in light of selecting true variables.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.40.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper addresses the problem of selecting variables in linear mixed models (LMM). We propose the Empirical Bayes Information Criterion (EBIC) using a partial prior information on the parameters of interest. Specifically EBIC incorporates a non-subjective prior distribution on regression coefficients with an unknown hyper-parameter, but it is free from the setup of a prior information on the nuisance parameters like variance components. It is shown that EBIC not only has the nice asymptotic property of consistency as a variable selection, but also performs better in small and large sample sizes than the conventional methods like AIC, conditional AIC and BIC in light of selecting true variables.
线性混合模型中变量选择的经验贝叶斯信息准则
研究了线性混合模型中变量的选择问题。我们提出了使用感兴趣参数的部分先验信息的经验贝叶斯信息准则(EBIC)。具体来说,EBIC结合了一个非主观先验分布的回归系数与一个未知的超参数,但它不受先验信息的设置,如方差成分的干扰参数。结果表明,EBIC方法不仅在变量选择上具有良好的渐近一致性,而且在选择真变量方面也比传统的AIC方法、条件AIC方法和BIC方法具有更好的小样本和大样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信