Semantics management for big networks

B. Mokhtar, M. Eltoweissy
{"title":"Semantics management for big networks","authors":"B. Mokhtar, M. Eltoweissy","doi":"10.1109/IRI.2014.7051885","DOIUrl":null,"url":null,"abstract":"We define \"Big Networks\" as those that generate big data and can benefit from big data management in their operations. Examples of big networks include the emerging Internet of things and social networks. A major challenge in big networks is storing, processing and accessing massive multidimensional data to extract useful information for more efficient and smarter networking operations. Dimension reduction, learning patterns and extracting semantics from big data would help in mitigating such challenge. We have proposes a network \"memory\" system, termed NetMem, with storage and recollection mechanisms to access and manage data semantics in the Internet. NetMem is inspired by functionalities of human memory for learning patterns from huge amounts of data. In this paper we refine NetMem design and explore hidden Markov models, latent dirichlet allocation, and simple statistical analysis-based techniques for semantic reasoning in NetMem. In addition, we utilize locality sensitive hashing for reducing dimensionality. Our simulation study demonstrates the benefits of NetMem and highlights the advantages and limitations of the aforementioned techniques both with and without dimensionality reduction.","PeriodicalId":360013,"journal":{"name":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","volume":"33 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2014.7051885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define "Big Networks" as those that generate big data and can benefit from big data management in their operations. Examples of big networks include the emerging Internet of things and social networks. A major challenge in big networks is storing, processing and accessing massive multidimensional data to extract useful information for more efficient and smarter networking operations. Dimension reduction, learning patterns and extracting semantics from big data would help in mitigating such challenge. We have proposes a network "memory" system, termed NetMem, with storage and recollection mechanisms to access and manage data semantics in the Internet. NetMem is inspired by functionalities of human memory for learning patterns from huge amounts of data. In this paper we refine NetMem design and explore hidden Markov models, latent dirichlet allocation, and simple statistical analysis-based techniques for semantic reasoning in NetMem. In addition, we utilize locality sensitive hashing for reducing dimensionality. Our simulation study demonstrates the benefits of NetMem and highlights the advantages and limitations of the aforementioned techniques both with and without dimensionality reduction.
大型网络的语义管理
我们将“大网络”定义为那些产生大数据并在运营中受益于大数据管理的网络。大型网络的例子包括新兴的物联网和社交网络。大型网络的一个主要挑战是存储、处理和访问大量多维数据,以提取有用的信息,以实现更高效、更智能的网络操作。降维、学习模式和从大数据中提取语义将有助于缓解这一挑战。我们提出了一个网络“记忆”系统,称为NetMem,具有存储和回忆机制来访问和管理Internet中的数据语义。NetMem的灵感来自于人类记忆从大量数据中学习模式的功能。在本文中,我们改进了NetMem的设计,并探索了NetMem中用于语义推理的隐藏马尔可夫模型、潜在狄利克雷分配和简单的基于统计分析的技术。此外,我们利用局部敏感哈希来降低维数。我们的模拟研究展示了NetMem的优点,并强调了上述技术在降维和不降维情况下的优点和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信