Performance evaluation of anomaly-detection algorithm for keystroke-typing based insider detection

Liang He, Zhixiang Li, Chao Shen
{"title":"Performance evaluation of anomaly-detection algorithm for keystroke-typing based insider detection","authors":"Liang He, Zhixiang Li, Chao Shen","doi":"10.1145/3063955.3063987","DOIUrl":null,"url":null,"abstract":"Keystroke dynamics is the process to identify or authenticate individuals based on the typing rhythm behaviors. There are many classifications proposed to check the user's legitimacy, and therefore we should make it clear how they perform in order to confirm promising research direction. Nevertheless, these researches provide experiments in different situations such as datasets, conditions and methodologies as well. This paper aims to benchmark the algorithms in the same dataset and feature in order to measure the performance on an equal level. Using dataset containing 51 subjects' typing rhythm, we implemented and evaluated 13 classifiers measured by F1-measure. We also develop a way to process the typing data, and test it on these algorithms. Considering the case that the model should reject outlander, we test the algorithms on open set. The top-performing classifier achieves F1-measure rates 0.92 when using 50 subjects' typing normalized data to train and the remaining one to test. The results, along with the normalization methodology, constitute a benchmark for comparing classifiers and measuring performance of keystroke dynamics for insider detection.","PeriodicalId":340447,"journal":{"name":"Proceedings of the ACM Turing 50th Celebration Conference - China","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Turing 50th Celebration Conference - China","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3063955.3063987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Keystroke dynamics is the process to identify or authenticate individuals based on the typing rhythm behaviors. There are many classifications proposed to check the user's legitimacy, and therefore we should make it clear how they perform in order to confirm promising research direction. Nevertheless, these researches provide experiments in different situations such as datasets, conditions and methodologies as well. This paper aims to benchmark the algorithms in the same dataset and feature in order to measure the performance on an equal level. Using dataset containing 51 subjects' typing rhythm, we implemented and evaluated 13 classifiers measured by F1-measure. We also develop a way to process the typing data, and test it on these algorithms. Considering the case that the model should reject outlander, we test the algorithms on open set. The top-performing classifier achieves F1-measure rates 0.92 when using 50 subjects' typing normalized data to train and the remaining one to test. The results, along with the normalization methodology, constitute a benchmark for comparing classifiers and measuring performance of keystroke dynamics for insider detection.
基于击键输入的内部检测异常检测算法的性能评价
击键动力学是基于输入节奏行为来识别或验证个体的过程。有许多分类建议来检查用户的合法性,因此我们应该弄清楚他们是如何执行的,以确定有前途的研究方向。然而,这些研究也提供了不同情况下的实验,如数据集、条件和方法。本文的目的是在相同的数据集和特征上对算法进行基准测试,以便在相同的水平上衡量性能。使用包含51名受试者打字节奏的数据集,我们实现并评估了F1-measure测量的13个分类器。我们还开发了一种处理打字数据的方法,并在这些算法上进行了测试。考虑到模型需要排斥外地人的情况,我们在开放集上对算法进行了测试。当使用50个受试者的打字归一化数据进行训练,剩下的一个进行测试时,表现最好的分类器达到了f1测量率0.92。结果与规范化方法一起构成了比较分类器和测量内部检测的击键动力学性能的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信