{"title":"Direct implementation of 2-D DCT on a low-cost linear-array architecture without intermediate transpose memory","authors":"Shen-Fu Hsiao, Jian-Ming Tseng","doi":"10.1109/SIPS.1999.822314","DOIUrl":null,"url":null,"abstract":"A direct method for the computation of 2-D DCT on a linear-array architecture is presented. The original 2-D DCT is converted into 1-D problem with representation of matrix-vector product. Then, we propose a fast algorithm with low computation complexity, and exploit an efficient mapping technique to generate from the algorithm a hardware-efficient architecture. Unlike other 2-D DCT processors that usually require transpose memory, our new architecture is easily pipelined for purpose of high throughput rate and is easily scalable for the computation of longer-length DCT.","PeriodicalId":275030,"journal":{"name":"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and Implementation (Cat. No.99TH8461)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.1999.822314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
A direct method for the computation of 2-D DCT on a linear-array architecture is presented. The original 2-D DCT is converted into 1-D problem with representation of matrix-vector product. Then, we propose a fast algorithm with low computation complexity, and exploit an efficient mapping technique to generate from the algorithm a hardware-efficient architecture. Unlike other 2-D DCT processors that usually require transpose memory, our new architecture is easily pipelined for purpose of high throughput rate and is easily scalable for the computation of longer-length DCT.