Self Organizing Maps for Synchronization in Wireless Sensor Networks

L. Paladina, A. Biundo, M. Scarpa, A. Puliafito
{"title":"Self Organizing Maps for Synchronization in Wireless Sensor Networks","authors":"L. Paladina, A. Biundo, M. Scarpa, A. Puliafito","doi":"10.1109/NTMS.2008.ECP.90","DOIUrl":null,"url":null,"abstract":"Providing a powerful synchronization system is one of the most important goals to be pursued if an efficient utilization of sensor networks has to be addressed. The basic concept behind a Wireless Sensor Network is to deploy a large number of sensor nodes able to acquire and process data. Most of WSNs applications require sensor nodes to maintain local clocks both to determine the events order and to provide temporal information to measured data; to achieve this goal applications generally require a low synchronization precision, close to Milli seconds. This paper proposes a novel synchronization system based on Kohonen's Self Organizing Maps (SOMs), able to provide some Artificial Intelligence features to sensor nodes. A SOM is a particular neural network that learns to classify data without any supervision. In each sensor node, a SOM is implemented to evaluate the sensor node time, using a very little amount of storage and computing resources. In a scenario where thousands of sensor nodes are placed, this system evaluates the time of each sensor in a distributed manner, assuming a very little percentage of nodes knowing the actual time, thus ensuring an effective clock synchronization among all the sensors.","PeriodicalId":432307,"journal":{"name":"2008 New Technologies, Mobility and Security","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 New Technologies, Mobility and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTMS.2008.ECP.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Providing a powerful synchronization system is one of the most important goals to be pursued if an efficient utilization of sensor networks has to be addressed. The basic concept behind a Wireless Sensor Network is to deploy a large number of sensor nodes able to acquire and process data. Most of WSNs applications require sensor nodes to maintain local clocks both to determine the events order and to provide temporal information to measured data; to achieve this goal applications generally require a low synchronization precision, close to Milli seconds. This paper proposes a novel synchronization system based on Kohonen's Self Organizing Maps (SOMs), able to provide some Artificial Intelligence features to sensor nodes. A SOM is a particular neural network that learns to classify data without any supervision. In each sensor node, a SOM is implemented to evaluate the sensor node time, using a very little amount of storage and computing resources. In a scenario where thousands of sensor nodes are placed, this system evaluates the time of each sensor in a distributed manner, assuming a very little percentage of nodes knowing the actual time, thus ensuring an effective clock synchronization among all the sensors.
用于无线传感器网络同步的自组织映射
如果要有效地利用传感器网络,提供一个强大的同步系统是要追求的最重要的目标之一。无线传感器网络背后的基本概念是部署大量能够获取和处理数据的传感器节点。大多数wsn应用要求传感器节点维持本地时钟,以确定事件顺序并为测量数据提供时间信息;要实现这一目标,应用程序通常需要较低的同步精度,接近毫秒。本文提出了一种新的基于Kohonen自组织映射(SOMs)的同步系统,该系统能够为传感器节点提供一些人工智能特征。SOM是一种特殊的神经网络,它在没有任何监督的情况下学习对数据进行分类。在每个传感器节点中,使用非常少的存储和计算资源,实现SOM来评估传感器节点时间。在放置数千个传感器节点的场景中,该系统以分布式方式评估每个传感器的时间,假设很少的节点知道实际时间,从而确保所有传感器之间有效的时钟同步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信