Mixed finite element approximation of periodic Hamilton-Jacobi-Bellman problems with application to numerical homogenization

D. Gallistl, Timo Sprekeler, E. Süli
{"title":"Mixed finite element approximation of periodic Hamilton-Jacobi-Bellman problems with application to numerical homogenization","authors":"D. Gallistl, Timo Sprekeler, E. Süli","doi":"10.1137/20M1371397","DOIUrl":null,"url":null,"abstract":"In the first part of the paper, we propose and rigorously analyze a mixed finite element method for the approximation of the periodic strong solution to the fully nonlinear second-order Hamilton--Jacobi--Bellman equation with coefficients satisfying the Cordes condition. These problems arise as the corrector problems in the homogenization of Hamilton--Jacobi--Bellman equations. The second part of the paper focuses on the numerical homogenization of such equations, more precisely on the numerical approximation of the effective Hamiltonian. Numerical experiments demonstrate the approximation scheme for the effective Hamiltonian and the numerical solution of the homogenized problem.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20M1371397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the first part of the paper, we propose and rigorously analyze a mixed finite element method for the approximation of the periodic strong solution to the fully nonlinear second-order Hamilton--Jacobi--Bellman equation with coefficients satisfying the Cordes condition. These problems arise as the corrector problems in the homogenization of Hamilton--Jacobi--Bellman equations. The second part of the paper focuses on the numerical homogenization of such equations, more precisely on the numerical approximation of the effective Hamiltonian. Numerical experiments demonstrate the approximation scheme for the effective Hamiltonian and the numerical solution of the homogenized problem.
周期Hamilton-Jacobi-Bellman问题的混合有限元逼近及其在数值均匀化中的应用
本文第一部分提出并严格分析了系数满足Cordes条件的二阶完全非线性Hamilton—Jacobi—Bellman方程周期强解的近似混合有限元方法。这些问题是Hamilton- Jacobi- Bellman方程齐次化过程中的校正问题。论文的第二部分着重于这类方程的数值均匀化,更准确地说是有效哈密顿量的数值逼近。数值实验证明了有效哈密顿量的近似格式和均匀化问题的数值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信