Weizheng Wang, Junwei Zhang, Qing Wang, Marco Zúñiga
{"title":"Leveraging Smart Lights for Passive Localization","authors":"Weizheng Wang, Junwei Zhang, Qing Wang, Marco Zúñiga","doi":"10.1109/MASS.2018.00049","DOIUrl":null,"url":null,"abstract":"Localization based on visible light is gaining significant attention. But most existing studies rely on a key requirement: the object of interest needs to carry an optical receiver (camera or photodiode). We remove this requirement and investigate the possibility of achieving accurate localization in a passive manner, that is, without requiring objects to carry any optical receiver. To achieve this goal, we exploit the reflective surfaces of objects and the unique propagation properties of LED luminaires. We present geometric models, a testbed implementation, and empirical evaluations to showcase the opportunities and challenges posed by this new type of localization. Overall, we show that our method can track with high accuracy (few centimeters) a subset of an object's trajectory and it can also identify passively the object's ID.","PeriodicalId":146214,"journal":{"name":"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 15th International Conference on Mobile Ad Hoc and Sensor Systems (MASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASS.2018.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Localization based on visible light is gaining significant attention. But most existing studies rely on a key requirement: the object of interest needs to carry an optical receiver (camera or photodiode). We remove this requirement and investigate the possibility of achieving accurate localization in a passive manner, that is, without requiring objects to carry any optical receiver. To achieve this goal, we exploit the reflective surfaces of objects and the unique propagation properties of LED luminaires. We present geometric models, a testbed implementation, and empirical evaluations to showcase the opportunities and challenges posed by this new type of localization. Overall, we show that our method can track with high accuracy (few centimeters) a subset of an object's trajectory and it can also identify passively the object's ID.