A hybrid GA-PSO fuzzy system for user identification on smart phones

Muhammad Shahzad, Saira Zahid, M. Farooq
{"title":"A hybrid GA-PSO fuzzy system for user identification on smart phones","authors":"Muhammad Shahzad, Saira Zahid, M. Farooq","doi":"10.1145/1569901.1570117","DOIUrl":null,"url":null,"abstract":"The major contribution of this paper is a hybrid GA-PSO fuzzy user identification system, UGuard, for smart phones. Our system gets 3 phone usage features as input to identify a user or an imposter. We show that these phone usage features for different users are diffused; therefore, we justify the need of a front end fuzzy classifier for them. We further show that the fuzzy classifier must be optimized using a back end online dynamic optimizer. The dynamic optimizer is a hybrid of Particle Swarm Optimizer (PSO) and Genetic Algorithm (GA). We have collected phone usage data of 10 real users having Symbian smart phones for 8 days. We evaluate our UGuard system on this dataset. The results of our experiments show that UGuard provides on the average an error rate of 2% or less. We also compared our system with four classical classifiers -- Na¨1ve Bayes, Back Propagation Neural Networks, J48 Decision Tree, and Fuzzy System -- and three evolutionary schemes -- fuzzy system optimized by ACO, PSO, and GA. To the best of our knowledge, the current work is the first system that has achieved such a small error rate. Moreover, the system is simple and efficient; therefore, it can be deployed on real world smart phones.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The major contribution of this paper is a hybrid GA-PSO fuzzy user identification system, UGuard, for smart phones. Our system gets 3 phone usage features as input to identify a user or an imposter. We show that these phone usage features for different users are diffused; therefore, we justify the need of a front end fuzzy classifier for them. We further show that the fuzzy classifier must be optimized using a back end online dynamic optimizer. The dynamic optimizer is a hybrid of Particle Swarm Optimizer (PSO) and Genetic Algorithm (GA). We have collected phone usage data of 10 real users having Symbian smart phones for 8 days. We evaluate our UGuard system on this dataset. The results of our experiments show that UGuard provides on the average an error rate of 2% or less. We also compared our system with four classical classifiers -- Na¨1ve Bayes, Back Propagation Neural Networks, J48 Decision Tree, and Fuzzy System -- and three evolutionary schemes -- fuzzy system optimized by ACO, PSO, and GA. To the best of our knowledge, the current work is the first system that has achieved such a small error rate. Moreover, the system is simple and efficient; therefore, it can be deployed on real world smart phones.
一种混合GA-PSO模糊智能手机用户识别系统
本文的主要贡献是一种用于智能手机的混合GA-PSO模糊用户识别系统UGuard。我们的系统获得3个手机使用特征作为输入来识别用户或冒名顶替者。我们表明,不同用户的这些手机使用特征是分散的;因此,我们证明需要一个前端模糊分类器。我们进一步表明,模糊分类器必须使用后端在线动态优化器进行优化。动态优化算法是粒子群优化算法和遗传算法的结合。我们收集了10位拥有塞班智能手机的真实用户8天的手机使用数据。我们在这个数据集上评估我们的UGuard系统。我们的实验结果表明,UGuard提供的平均错误率为2%或更低。我们还将我们的系统与四种经典分类器(纳伊夫贝叶斯、反向传播神经网络、J48决策树和模糊系统)以及三种进化方案(由蚁群算法、粒子群算法和遗传算法优化的模糊系统)进行了比较。据我们所知,目前的工作是第一个实现如此小错误率的系统。系统简单、高效;因此,它可以部署在现实世界的智能手机上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信