{"title":"A hybrid GA-PSO fuzzy system for user identification on smart phones","authors":"Muhammad Shahzad, Saira Zahid, M. Farooq","doi":"10.1145/1569901.1570117","DOIUrl":null,"url":null,"abstract":"The major contribution of this paper is a hybrid GA-PSO fuzzy user identification system, UGuard, for smart phones. Our system gets 3 phone usage features as input to identify a user or an imposter. We show that these phone usage features for different users are diffused; therefore, we justify the need of a front end fuzzy classifier for them. We further show that the fuzzy classifier must be optimized using a back end online dynamic optimizer. The dynamic optimizer is a hybrid of Particle Swarm Optimizer (PSO) and Genetic Algorithm (GA). We have collected phone usage data of 10 real users having Symbian smart phones for 8 days. We evaluate our UGuard system on this dataset. The results of our experiments show that UGuard provides on the average an error rate of 2% or less. We also compared our system with four classical classifiers -- Na¨1ve Bayes, Back Propagation Neural Networks, J48 Decision Tree, and Fuzzy System -- and three evolutionary schemes -- fuzzy system optimized by ACO, PSO, and GA. To the best of our knowledge, the current work is the first system that has achieved such a small error rate. Moreover, the system is simple and efficient; therefore, it can be deployed on real world smart phones.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"435 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1570117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The major contribution of this paper is a hybrid GA-PSO fuzzy user identification system, UGuard, for smart phones. Our system gets 3 phone usage features as input to identify a user or an imposter. We show that these phone usage features for different users are diffused; therefore, we justify the need of a front end fuzzy classifier for them. We further show that the fuzzy classifier must be optimized using a back end online dynamic optimizer. The dynamic optimizer is a hybrid of Particle Swarm Optimizer (PSO) and Genetic Algorithm (GA). We have collected phone usage data of 10 real users having Symbian smart phones for 8 days. We evaluate our UGuard system on this dataset. The results of our experiments show that UGuard provides on the average an error rate of 2% or less. We also compared our system with four classical classifiers -- Na¨1ve Bayes, Back Propagation Neural Networks, J48 Decision Tree, and Fuzzy System -- and three evolutionary schemes -- fuzzy system optimized by ACO, PSO, and GA. To the best of our knowledge, the current work is the first system that has achieved such a small error rate. Moreover, the system is simple and efficient; therefore, it can be deployed on real world smart phones.