{"title":"Energy savings in opportunistic networks","authors":"S. T. Kouyoumdjieva, G. Karlsson","doi":"10.1109/WONS.2014.6814722","DOIUrl":null,"url":null,"abstract":"A major challenge in mobile wireless devices for opportunistic networks is to minimize the energy consumption. The minimization however should not come at a cost of reduced application throughput (i.e. goodput). This work evaluates the potential performance gains for mobile nodes that adopt a duty-cycling scheme in an opportunistic context. We present an analytical framework for evaluating the energy consumption of nodes based on a probabilistic estimation of effective contact durations, and we validate this framework on a mobility scenario. We further perform extensive trace-driven simulations and demonstrate that a duty-cycling scheme considerably improves the performance of opportunistic content distribution systems by decreasing the energy consumption without significantly affecting the goodput.","PeriodicalId":386988,"journal":{"name":"2014 11th Annual Conference on Wireless On-demand Network Systems and Services (WONS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Annual Conference on Wireless On-demand Network Systems and Services (WONS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WONS.2014.6814722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A major challenge in mobile wireless devices for opportunistic networks is to minimize the energy consumption. The minimization however should not come at a cost of reduced application throughput (i.e. goodput). This work evaluates the potential performance gains for mobile nodes that adopt a duty-cycling scheme in an opportunistic context. We present an analytical framework for evaluating the energy consumption of nodes based on a probabilistic estimation of effective contact durations, and we validate this framework on a mobility scenario. We further perform extensive trace-driven simulations and demonstrate that a duty-cycling scheme considerably improves the performance of opportunistic content distribution systems by decreasing the energy consumption without significantly affecting the goodput.