{"title":"A vision of miking: interactive programmatic modeling, sound language composition, and self-learning compilation","authors":"David Broman","doi":"10.1145/3357766.3359531","DOIUrl":null,"url":null,"abstract":"This paper introduces a vision of Miking, a language framework for constructing efficient and sound language environments and compilers for domain-specific modeling languages. In particular, this language framework has three key objectives: (i) to automatically generate interactive programmatic modeling environments, (ii) to guarantee sound compositions of language fragments that enable both rapid and safe domain-specific language development, (iii) to include first-class support for self-learning compilation, targeting heterogeneous execution platforms. The initiative is motivated in the domain of mathematical modeling languages. Specifically, two different example domains are discussed: (i) modeling, simulation, and verification of cyber-physical systems, and (ii) domain-specific differentiable probabilistic programming. The paper describes the main objectives of the vision, as well as concrete research challenges and research directions.","PeriodicalId":354325,"journal":{"name":"Proceedings of the 12th ACM SIGPLAN International Conference on Software Language Engineering","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM SIGPLAN International Conference on Software Language Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357766.3359531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper introduces a vision of Miking, a language framework for constructing efficient and sound language environments and compilers for domain-specific modeling languages. In particular, this language framework has three key objectives: (i) to automatically generate interactive programmatic modeling environments, (ii) to guarantee sound compositions of language fragments that enable both rapid and safe domain-specific language development, (iii) to include first-class support for self-learning compilation, targeting heterogeneous execution platforms. The initiative is motivated in the domain of mathematical modeling languages. Specifically, two different example domains are discussed: (i) modeling, simulation, and verification of cyber-physical systems, and (ii) domain-specific differentiable probabilistic programming. The paper describes the main objectives of the vision, as well as concrete research challenges and research directions.