Advanced statistical modelling ideas, a challenge for research in culture and education / Ideas sobre modelos estadísticos avanzados: un desafío para la investigación en cultura y educación

Amir Hefetz, Gabriel Liberman, Naymé-Daniela Salas
{"title":"Advanced statistical modelling ideas, a challenge for research in culture and education / Ideas sobre modelos estadísticos avanzados: un desafío para la investigación en cultura y educación","authors":"Amir Hefetz, Gabriel Liberman, Naymé-Daniela Salas","doi":"10.1080/11356405.2017.1368163","DOIUrl":null,"url":null,"abstract":"Abstract The availability of computerized statistical packages allows us to plug in our data and to expect a set of estimates, which we can communicate in our final research report. However, statistical software is not an end; it is only the means. Our responsibility as researchers is to develop a set of arguments that explain why our final methodological choice is the better one, which will yield reliable answers for the study questions within the theoretical setting. Journals of all types require authors to deploy innovative statistical models when analysing collected data. Yet, the problem of advanced modelling strategies still remains — authors disregard key assumptions, choose the wrong analytical strategies and are not aware of alternative strategies to support or reject their hypotheses. This special issue provides readers with a reference framework for some of the most common methodological concerns. The articles included in this monographic issue deal with relatable scenarios and offer state-of-the-art statistical approaches to data treatment. We are confident that this special issue will be extremely useful to past and future authors of Cultura y Educación, and we hope it will increase the quality of the papers published by the journal.","PeriodicalId":153832,"journal":{"name":"Cultura y Educación","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cultura y Educación","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11356405.2017.1368163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract The availability of computerized statistical packages allows us to plug in our data and to expect a set of estimates, which we can communicate in our final research report. However, statistical software is not an end; it is only the means. Our responsibility as researchers is to develop a set of arguments that explain why our final methodological choice is the better one, which will yield reliable answers for the study questions within the theoretical setting. Journals of all types require authors to deploy innovative statistical models when analysing collected data. Yet, the problem of advanced modelling strategies still remains — authors disregard key assumptions, choose the wrong analytical strategies and are not aware of alternative strategies to support or reject their hypotheses. This special issue provides readers with a reference framework for some of the most common methodological concerns. The articles included in this monographic issue deal with relatable scenarios and offer state-of-the-art statistical approaches to data treatment. We are confident that this special issue will be extremely useful to past and future authors of Cultura y Educación, and we hope it will increase the quality of the papers published by the journal.
计算机化统计软件包的可用性使我们能够插入我们的数据并期望一组估计,我们可以在最终的研究报告中进行交流。然而,统计软件并不是终点;这只是手段。作为研究人员,我们的责任是提出一套论证,解释为什么我们最终的方法论选择是更好的,这将在理论设置中为研究问题提供可靠的答案。所有类型的期刊都要求作者在分析收集到的数据时采用创新的统计模型。然而,高级建模策略的问题仍然存在——作者忽视关键假设,选择错误的分析策略,并且不知道支持或拒绝他们的假设的替代策略。本期特刊为读者提供了一些最常见的方法关注点的参考框架。本专题中包含的文章处理相关场景,并提供最先进的数据处理统计方法。我们相信,这一期特刊将对《文化》(Educación)的过去和未来的作者非常有用,我们希望它将提高该杂志发表的论文的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信