An incremental parallel neural network for unsupervised classification

Amel Hebboul, Meriem Hacini, F. Hachouf
{"title":"An incremental parallel neural network for unsupervised classification","authors":"Amel Hebboul, Meriem Hacini, F. Hachouf","doi":"10.1109/WOSSPA.2011.5931521","DOIUrl":null,"url":null,"abstract":"This paper presents a novel unsupervised and parallel learning technique for data clustering that are polluted by noise using neural network approaches. The proposed approach is based on a self-organizing incremental neural network. The design of two-layer neural network enables this system to represent the topological structure of unsupervised on-line data, reports the reasonable number of clusters, and gives typical prototype patterns of every cluster without prior conditions such as a suitable number of nodes. To confirm the efficiency of the proposed learning mechanism, we present a set of experiments with artificial data sets and real world data sets.","PeriodicalId":343415,"journal":{"name":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Systems, Signal Processing and their Applications, WOSSPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2011.5931521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a novel unsupervised and parallel learning technique for data clustering that are polluted by noise using neural network approaches. The proposed approach is based on a self-organizing incremental neural network. The design of two-layer neural network enables this system to represent the topological structure of unsupervised on-line data, reports the reasonable number of clusters, and gives typical prototype patterns of every cluster without prior conditions such as a suitable number of nodes. To confirm the efficiency of the proposed learning mechanism, we present a set of experiments with artificial data sets and real world data sets.
一种用于无监督分类的增量并行神经网络
本文提出了一种新的无监督并行学习技术,利用神经网络方法对受噪声污染的数据进行聚类。该方法基于自组织增量神经网络。两层神经网络的设计使该系统能够表示无监督在线数据的拓扑结构,报告合理的簇数,并在没有适当节点数等先决条件的情况下给出每个簇的典型原型模式。为了验证所提出的学习机制的有效性,我们提出了一组人工数据集和真实世界数据集的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信