A Decentralized and Robust Approach to Estimating a Probabilistic Mixture Model for Structuring Distributed Data

Ali El Attar, A. Pigeau, Marc Gelgon
{"title":"A Decentralized and Robust Approach to Estimating a Probabilistic Mixture Model for Structuring Distributed Data","authors":"Ali El Attar, A. Pigeau, Marc Gelgon","doi":"10.1109/WI-IAT.2011.46","DOIUrl":null,"url":null,"abstract":"Data sharing services on the web host huge amounts of resources supplied and accessed by millions of users around the world. While the classical approach is a central control over the data set, even if this data set is distributed, there is growing interesting in decentralized solutions, because of good properties (in particularity, privacy and scaling up). In this paper, we explore a machine learning side of this work direction. We propose a novel technique for decentralized estimation of probabilistic mixture models, which are among the most versatile generative models for understanding data sets. More precisely, we demonstrate how to estimate a global mixture model from a set of local models. Our approach accommodates dynamic topology and data sources and is statistically robust, i.e. resilient to the presence of unreliable local models. Such outlier models may arise from local data which are outliers, compared to the global trend, or poor mixture estimation. We report experiments on synthetic data and real geo-location data from Flickr.","PeriodicalId":128421,"journal":{"name":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2011.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Data sharing services on the web host huge amounts of resources supplied and accessed by millions of users around the world. While the classical approach is a central control over the data set, even if this data set is distributed, there is growing interesting in decentralized solutions, because of good properties (in particularity, privacy and scaling up). In this paper, we explore a machine learning side of this work direction. We propose a novel technique for decentralized estimation of probabilistic mixture models, which are among the most versatile generative models for understanding data sets. More precisely, we demonstrate how to estimate a global mixture model from a set of local models. Our approach accommodates dynamic topology and data sources and is statistically robust, i.e. resilient to the presence of unreliable local models. Such outlier models may arise from local data which are outliers, compared to the global trend, or poor mixture estimation. We report experiments on synthetic data and real geo-location data from Flickr.
构造分布式数据的概率混合模型的分散鲁棒估计方法
数据共享服务在网络主机上提供了大量的资源,并由世界各地的数百万用户访问。虽然经典的方法是对数据集进行集中控制,但即使该数据集是分布式的,分散的解决方案也越来越有趣,因为它具有良好的特性(特别是隐私和可扩展性)。在本文中,我们探索了这个工作方向的机器学习方面。我们提出了一种分散估计概率混合模型的新技术,这是理解数据集最通用的生成模型之一。更准确地说,我们演示了如何从一组局部模型估计一个全局混合模型。我们的方法适应动态拓扑和数据源,并且具有统计鲁棒性,即对不可靠的局部模型的存在具有弹性。与全球趋势相比,这种异常值模型可能来自局部数据,这些数据是异常值,或者混合估计不佳。我们报告了来自Flickr的合成数据和真实地理位置数据的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信